Your browser doesn't support javascript.
loading
Inferring Rates and Length-Distributions of Indels Using Approximate Bayesian Computation.
Levy Karin, Eli; Shkedy, Dafna; Ashkenazy, Haim; Cartwright, Reed A; Pupko, Tal.
Afiliação
  • Levy Karin E; Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
  • Shkedy D; Department of Molecular Biology & Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
  • Ashkenazy H; Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
  • Cartwright RA; Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
  • Pupko T; The Biodesign Institute, Arizona State University, Tempe, AZ.
Genome Biol Evol ; 9(5): 1280-1294, 2017 05 01.
Article em En | MEDLINE | ID: mdl-28453624
The most common evolutionary events at the molecular level are single-base substitutions, as well as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates. We study the performance of our methodology and show that it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C ++ program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Teorema de Bayes / Mutação INDEL Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Teorema de Bayes / Mutação INDEL Idioma: En Ano de publicação: 2017 Tipo de documento: Article