Computational approaches for interpreting scRNA-seq data.
FEBS Lett
; 591(15): 2213-2225, 2017 08.
Article
em En
| MEDLINE
| ID: mdl-28524227
The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high-dimensional data mining techniques. Here, we consider biological questions for which scRNA-seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene-level analyses are particularly informative areas of computational analysis.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Expressão Gênica
/
Análise de Sequência de RNA
/
Biologia Computacional
/
Análise de Célula Única
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article