Your browser doesn't support javascript.
loading
CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.
Xu, Lei; Yang, Huan; Gao, Yang; Chen, Zeyu; Xie, Liangfu; Liu, Yulin; Liu, Ying; Wang, Xiaobao; Li, Hanwei; Lai, Weifeng; He, Yuan; Yao, Anzhi; Ma, Liying; Shao, Yiming; Zhang, Bin; Wang, Chengyan; Chen, Hu; Deng, Hongkui.
Afiliação
  • Xu L; Department of Hematopoietic Stem Cell Transplantation, 307 Hospital of PLA, Beijing 100071, China; Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100850, China.
  • Yang H; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Gao Y; Department of Hematopoietic Stem Cell Transplantation, 307 Hospital of PLA, Beijing 100071, China; Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100850, China; Department of Hematology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China.
  • Chen Z; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Xie L; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Liu Y; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Liu Y; National Center for AIDS/STD Control and Prevention, China CDC, Beijing 102206, China.
  • Wang X; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Li H; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Lai W; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • He Y; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Yao A; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Ma L; National Center for AIDS/STD Control and Prevention, China CDC, Beijing 102206, China.
  • Shao Y; National Center for AIDS/STD Control and Prevention, China CDC, Beijing 102206, China.
  • Zhang B; Department of Hematopoietic Stem Cell Transplantation, 307 Hospital of PLA, Beijing 100071, China; Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100850, China.
  • Wang C; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
  • Chen H; Department of Hematopoietic Stem Cell Transplantation, 307 Hospital of PLA, Beijing 100071, China; Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100850, China. Electronic address: chenhu217@aliyun.com.
  • Deng H; Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentia
Mol Ther ; 25(8): 1782-1789, 2017 08 02.
Article em En | MEDLINE | ID: mdl-28527722
ABSTRACT
Transplantation of hematopoietic stem cells (HSCs) with a naturally occurring CCR5 mutation confers a loss of detectable HIV-1 in the patient, making ablation of the CCR5 gene in HSCs an ideal therapy for an HIV-1 cure. Although CCR5 disruption has been attempted in CD4+ T cells and hematopoietic stem/progenitor cells (HSPCs), efficient gene editing with high specificity and long-term therapeutic potential remains a major challenge for clinical translation. Here, we established a CRISPR/Cas9 gene editing system in human CD34+ HSPCs and achieved efficient CCR5 ablation evaluated in long-term reconstituted NOD/Prkdcscid/IL-2Rγnull mice. The CCR5 disruption efficiency in our system remained robust in secondary transplanted repopulating hematopoietic cells. More importantly, an HIV-1 resistance effect was observed as indicated by significant reduction of virus titration and enrichment of human CD4+ T cells. Hence, we successfully established a CRISPR/Cas9 mediated CCR5 ablating system in long-term HSCs, which confers HIV-1 resistance in vivo. Our study provides evidence for translating CCR5 gene-edited HSC transplantation for an HIV cure to the clinic.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Hematopoéticas / Infecções por HIV / HIV-1 / Marcação de Genes / Receptores CCR5 / Sistemas CRISPR-Cas Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Hematopoéticas / Infecções por HIV / HIV-1 / Marcação de Genes / Receptores CCR5 / Sistemas CRISPR-Cas Idioma: En Ano de publicação: 2017 Tipo de documento: Article