A novel scheme for the validation of an automated classification method for epileptic spikes by comparison with multiple observers.
Clin Neurophysiol
; 128(7): 1246-1254, 2017 07.
Article
em En
| MEDLINE
| ID: mdl-28531810
OBJECTIVE: To validate the application of an automated neuronal spike classification algorithm, Wave_clus (WC), on interictal epileptiform discharges (IED) obtained from human intracranial EEG (icEEG) data. METHOD: Five 10-min segments of icEEG recorded in 5 patients were used. WC and three expert EEG reviewers independently classified one hundred IED events into IED classes or non-IEDs. First, we determined whether WC-human agreement variability falls within inter-reviewer agreement variability by calculating the variation of information for each classifier pair and quantifying the overlap between all WC-reviewer and all reviewer-reviewer pairs. Second, we compared WC and EEG reviewers' spike identification and individual spike class labels visually and quantitatively. RESULTS: The overlap between all WC-human pairs and all human pairs was >80% for 3/5 patients and >58% for the other 2 patients demonstrating WC falling within inter-human variation. The average sensitivity of spike marking for WC was 91% and >87% for all three EEG reviewers. Finally, there was a strong visual and quantitative similarity between WC and EEG reviewers. CONCLUSIONS: WC performance is indistinguishable to that of EEG reviewers' suggesting it could be a valid clinical tool for the assessment of IEDs. SIGNIFICANCE: WC can be used to provide quantitative analysis of epileptic spikes.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Potenciais de Ação
/
Eletroencefalografia
/
Epilepsia
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article