Your browser doesn't support javascript.
loading
Photophysical Properties of a Novel and Biologically Active 3(2H)-Pyridazinone Derivative Using Solvatochromic Approach.
Desai, Vani R; Hunagund, Shirajahammad M; Pujar, Malatesh S; Basanagouda, Mahantesha; Kadadevarmath, Jagadish S; Sidarai, Ashok H.
Afiliação
  • Desai VR; Department of Studies in Physics, Karnatak University, Dharwad, Karnataka, 580003, India.
  • Hunagund SM; Department of Studies in Physics, Karnatak University, Dharwad, Karnataka, 580003, India.
  • Pujar MS; Department of Studies in Physics, Karnatak University, Dharwad, Karnataka, 580003, India.
  • Basanagouda M; P. G. Department of Studies in Chemistry, K. L. E. Society's P. C. Jabin Science College, Hubli, Karnataka, 580031, India.
  • Kadadevarmath JS; Department of Studies in Physics, Karnatak University, Dharwad, Karnataka, 580003, India.
  • Sidarai AH; Department of Studies in Physics, Karnatak University, Dharwad, Karnataka, 580003, India. ashok_sidarai@rediffmail.com.
J Fluoresc ; 27(5): 1793-1800, 2017 Sep.
Article em En | MEDLINE | ID: mdl-28580505
ABSTRACT
Herein, we report photophysical properties of a novel and biologically active 3(2H)-pyridazinone derivative 5-(4-chloro-2-hydoxy-phenyl)-2-phenyl-2H-pyridazin-3-one [CHP] molecule using solvatochromic approaches. Absorption and fluorescence spectra of CHP molecule have been measured at room temperature in various solvents of different polarities. From this, it is observed that the positions, intensities and shapes of the absorption and emission bands are usually modified. Experimentally, the ground and excited state dipole moments are estimated using solvatochromic shift method which involves Lippert's, Bakshiev's and Kawski-Chamma-Viallet's equations. Theoretically, the ground state dipole moment was estimated using the Gaussian-09 program. The value of ground state dipole moment estimated using experimental and theoretical methods are well correlated. This inference that the molecular geometry is taken for CHP molecule under theoretical and experimental methods are similar. Further, we observed that the excited state dipole moment (µ e ) is greater than the ground state dipole moment (µ g ) which indicates that the excited state is more polar than the ground state. Furthermore, we have estimated an angle between the ground and excited state dipole moments. In addition, we have estimated the fluorescence quantum yield of CHP molecule using Rhodamine B as a standard reference in different solvents.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article