Your browser doesn't support javascript.
loading
Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells.
Kopp, Mathis; Rotan, Olga; Papadopoulos, Chrisovalantis; Schulze, Nina; Meyer, Hemmo; Epple, Matthias.
Afiliação
  • Kopp M; Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
  • Rotan O; Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
  • Papadopoulos C; Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
  • Schulze N; Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Essen, Germany.
  • Meyer H; Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
  • Epple M; Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
PLoS One ; 12(6): e0178260, 2017.
Article em En | MEDLINE | ID: mdl-28586345
ABSTRACT
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ficoeritrina / Sistemas de Liberação de Medicamentos / Nanopartículas / Proteólise Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ficoeritrina / Sistemas de Liberação de Medicamentos / Nanopartículas / Proteólise Idioma: En Ano de publicação: 2017 Tipo de documento: Article