Your browser doesn't support javascript.
loading
Inter-individual variability in the foraging behaviour of traplining bumblebees.
Klein, Simon; Pasquaretta, Cristian; Barron, Andrew B; Devaud, Jean-Marc; Lihoreau, Mathieu.
Afiliação
  • Klein S; Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research (CNRS), University of Toulouse (UPS), Toulouse, France. simon.klein@univ-tlse3.fr.
  • Pasquaretta C; Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia. simon.klein@univ-tlse3.fr.
  • Barron AB; Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research (CNRS), University of Toulouse (UPS), Toulouse, France.
  • Devaud JM; Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
  • Lihoreau M; Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research (CNRS), University of Toulouse (UPS), Toulouse, France.
Sci Rep ; 7(1): 4561, 2017 07 04.
Article em En | MEDLINE | ID: mdl-28676725
ABSTRACT
Workers of social insects, such as bees, ants and wasps, show some degree of inter-individual variability in decision-making, learning and memory. Whether these natural cognitive differences translate into distinct adaptive behavioural strategies is virtually unknown. Here we examined variability in the movement patterns of bumblebee foragers establishing routes between artificial flowers. We recorded all flower visitation sequences performed by 29 bees tested for 20 consecutive foraging bouts in three experimental arrays, each characterised by a unique spatial configuration of artificial flowers and three-dimensional landmarks. All bees started to develop efficient routes as they accumulated foraging experience in each array, and showed consistent inter-individual differences in their levels of route fidelity and foraging performance, as measured by travel speed and the frequency of revisits to flowers. While the tendency of bees to repeat the same route was influenced by their colony origin, foraging performance was correlated to body size. The largest foragers travelled faster and made less revisits to empty flowers. We discuss the possible adaptive value of such inter-individual variability within the forager caste for optimisation of colony-level foraging performances in social pollinators.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Abelhas / Comportamento Alimentar / Variação Biológica Individual Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Abelhas / Comportamento Alimentar / Variação Biológica Individual Idioma: En Ano de publicação: 2017 Tipo de documento: Article