Your browser doesn't support javascript.
loading
Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin.
Hugo, H J; Gunasinghe, N P A D; Hollier, B G; Tanaka, T; Blick, T; Toh, A; Hill, P; Gilles, C; Waltham, M; Thompson, E W.
Afiliação
  • Hugo HJ; Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia. honor.hugo@qut.edu.au.
  • Gunasinghe NPAD; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia. honor.hugo@qut.edu.au.
  • Hollier BG; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia. honor.hugo@qut.edu.au.
  • Tanaka T; Translational Research Institute, Woolloongabba, QLD, Australia. honor.hugo@qut.edu.au.
  • Blick T; Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia.
  • Toh A; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
  • Hill P; Australian Prostate Cancer Research Centre-Queensland, Brisbane, Australia.
  • Gilles C; Translational Research Institute, Woolloongabba, QLD, Australia.
  • Waltham M; Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia.
  • Thompson EW; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
Breast Cancer Res ; 19(1): 86, 2017 Jul 27.
Article em En | MEDLINE | ID: mdl-28750639
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is associated with downregulated E-cadherin and frequently with decreased proliferation. Proliferation may be restored in secondary metastases by mesenchymal-to-epithelial transition (MET). We tested whether E-cadherin maintains epithelial proliferation in MDA-MB-468 breast cancer cells, facilitating metastatic colonization in severe combined immunodeficiency (SCID) mice. METHODS: EMT/MET markers were assessed in xenograft tumors by immunohistochemistry. Stable E-cadherin manipulation was effected by transfection and verified by Western blotting, immunocytochemistry, and quantitative polymerase chain reaction (qPCR). Effects of E-cadherin manipulation on proliferation and chemomigration were assessed in vitro by performing sulforhodamine B assays and Transwell assays, respectively. Invasion was assessed by Matrigel outgrowth; growth in vivo was assessed in SCID mice; and EMT status was assessed by qPCR. Hypoxic response of E-cadherin knockdown cell lines was assessed by qPCR after hypoxic culture. Repeated measures analysis of variance (ANOVA), one- and two-way ANOVA with posttests, and paired Student's t tests were performed to determine significance (p < 0.05). RESULTS: EMT occurred at the necrotic interface of MDA-MB-468 xenografts in regions of hypoxia. Extratumoral deposits (vascular and lymphatic inclusions, local and axillary nodes, and lung metastases) strongly expressed E-cadherin. MDA-MB-468 cells overexpressing E-cadherin were more proliferative and less migratory in vitro, whereas E-cadherin knockdown (short hairpin CDH1 [shCDH1]) cells were more migratory and invasive, less proliferative, and took longer to form tumors. shCDH1-MDA-MB-468 xenografts did not contain the hypoxia-induced necrotic areas observed in wild-type (WT) and shSCR-MDA-MB-468 tumors, but they did not exhibit an impaired hypoxic response in vitro. Although vimentin expression was not stimulated by E-cadherin knockdown in 2D or 3D cultures, xenografts of these cells were globally vimentin-positive rather than exhibiting regional EMT, and they expressed higher SNA1 than their in vitro counterparts. E-cadherin suppression caused a trend toward reduced lung metastasis, whereas E-cadherin overexpression resulted in the reverse trend, consistent with the increased proliferation rate and predominantly epithelial phenotype of MDA-MB-468 cells outside the primary xenograft. This was also originally observed in WT xenografts. Furthermore, we found that patients with breast cancer that expressed E-cadherin were more likely to have metastases. CONCLUSIONS: E-cadherin expression promotes growth of primary breast tumors and conceivably the formation of metastases, supporting a role for MET in metastasis. E-cadherin needs to be reevaluated as a tumor suppressor.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Caderinas / Proliferação de Células / Transição Epitelial-Mesenquimal Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Caderinas / Proliferação de Células / Transição Epitelial-Mesenquimal Idioma: En Ano de publicação: 2017 Tipo de documento: Article