Your browser doesn't support javascript.
loading
Contrasting effects of a classic Nrf2 activator, tert-butylhydroquinone, on the glutathione-related antioxidant defenses in Pacific oysters, Crassostrea gigas.
Danielli, Naissa Maria; Trevisan, Rafael; Mello, Danielle Ferraz; Fischer, Kelvis; Deconto, Vanessa Schadeck; Bianchini, Adalto; Bainy, Afonso Celso Dias; Dafre, Alcir Luiz.
Afiliação
  • Danielli NM; Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil. Electronic address: naissa_d@yahoo.com.br.
  • Trevisan R; Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
  • Mello DF; Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
  • Fischer K; Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
  • Deconto VS; Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
  • Bianchini A; Institute of Biological Sciences, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil.
  • Bainy ACD; Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
  • Dafre AL; Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil. Electronic address: alcir.dafre@ufsc.br.
Mar Environ Res ; 130: 142-149, 2017 Sep.
Article em En | MEDLINE | ID: mdl-28764960
ABSTRACT
Nrf2 is a well-known transcription factor controlling a number of antioxidant defense-related genes, which is understudied in bivalves. In this study, oysters Crassostrea gigas were exposed for 24, 48 and 96 h to 10 or 30 µM tert-butylhydroquinone (tBHQ), a classic Nrf2 activator. At 96 h, a clear induction of GSH-related antioxidant defenses was observed in gills of tBHQ-exposed animals, including GSH, glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR). Unexpectedly, the activities of GST, GPx and GR were significantly decreased 24 h after tBHQ treatment, suggesting a possible inhibition, which was supported by in vitro experiments. GR mRNA (24 h) and protein levels (24 and 96 h) were increased by tBHQ treatment, confirming its induction, possibly by the Nrf2 pathway. The conserved domains at C. gigas Keap1 and Nrf2 proteins and the clear induction of GSH-related antioxidant defenses by tBHQ, a classical Nrf2 inducer, support the idea of a functional Nrf2/Keap1 pathway in bivalves. tBHQ also proved to be a tool to explore redox regulatory mechanisms in bivalves.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Crassostrea / Hidroquinonas Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Crassostrea / Hidroquinonas Idioma: En Ano de publicação: 2017 Tipo de documento: Article