Your browser doesn't support javascript.
loading
Cell-Type-Specific Translation Profiling Reveals a Novel Strategy for Treating Fragile X Syndrome.
Thomson, Sophie R; Seo, Sang S; Barnes, Stephanie A; Louros, Susana R; Muscas, Melania; Dando, Owen; Kirby, Caoimhe; Wyllie, David J A; Hardingham, Giles E; Kind, Peter C; Osterweil, Emily K.
Afiliação
  • Thomson SR; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Seo SS; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Barnes SA; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Louros SR; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Muscas M; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Dando O; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Kirby C; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Wyllie DJA; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Hardingham GE; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; UK Dementia Research Institut
  • Kind PC; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
  • Osterweil EK; Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK. Electronic address: emily.ost
Neuron ; 95(3): 550-563.e5, 2017 Aug 02.
Article em En | MEDLINE | ID: mdl-28772121
ABSTRACT
Excessive mRNA translation downstream of group I metabotropic glutamate receptors (mGlu1/5) is a core pathophysiology of fragile X syndrome (FX); however, the differentially translating mRNAs that contribute to altered neural function are not known. We used translating ribosome affinity purification (TRAP) and RNA-seq to identify mistranslating mRNAs in CA1 pyramidal neurons of the FX mouse model (Fmr1-/y) hippocampus, which exhibit exaggerated mGlu1/5-induced long-term synaptic depression (LTD). In these neurons, we find that the Chrm4 transcript encoding muscarinic acetylcholine receptor 4 (M4) is excessively translated, and synthesis of M4 downstream of mGlu5 activation is mimicked and occluded. Surprisingly, enhancement rather than inhibition of M4 activity normalizes core phenotypes in the Fmr1-/y, including excessive protein synthesis, exaggerated mGluR-LTD, and audiogenic seizures. These results suggest that not all excessively translated mRNAs in the Fmr1-/y brain are detrimental, and some may be candidates for enhancement to correct pathological changes in the FX brain.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Depressão Sináptica de Longo Prazo / Proteína do X Frágil da Deficiência Intelectual / Síndrome do Cromossomo X Frágil / Hipocampo / Neurônios Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Depressão Sináptica de Longo Prazo / Proteína do X Frágil da Deficiência Intelectual / Síndrome do Cromossomo X Frágil / Hipocampo / Neurônios Idioma: En Ano de publicação: 2017 Tipo de documento: Article