Your browser doesn't support javascript.
loading
Discovery and mode of action of a novel analgesic ß-toxin from the African spider Ceratogyrus darlingi.
Sousa, Silmara R; Wingerd, Joshua S; Brust, Andreas; Bladen, Christopher; Ragnarsson, Lotten; Herzig, Volker; Deuis, Jennifer R; Dutertre, Sebastien; Vetter, Irina; Zamponi, Gerald W; King, Glenn F; Alewood, Paul F; Lewis, Richard J.
Afiliação
  • Sousa SR; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Wingerd JS; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Brust A; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Bladen C; Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, The University of Calgary, Calgary, Canada.
  • Ragnarsson L; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Herzig V; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Deuis JR; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Dutertre S; Institut des Biomolécules Max Mousseron, Université Montpellier - CNRS, Montpellier, France.
  • Vetter I; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Zamponi GW; School of Pharmacy, The University of Queensland, Brisbane, Australia.
  • King GF; Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, The University of Calgary, Calgary, Canada.
  • Alewood PF; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
  • Lewis RJ; IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
PLoS One ; 12(9): e0182848, 2017.
Article em En | MEDLINE | ID: mdl-28880874
Spider venoms are rich sources of peptidic ion channel modulators with important therapeutical potential. We screened a panel of 60 spider venoms to find modulators of ion channels involved in pain transmission. We isolated, synthesized and pharmacologically characterized Cd1a, a novel peptide from the venom of the spider Ceratogyrus darlingi. Cd1a reversibly paralysed sheep blowflies (PD50 of 1318 pmol/g) and inhibited human Cav2.2 (IC50 2.6 µM) but not Cav1.3 or Cav3.1 (IC50 > 30 µM) in fluorimetric assays. In patch-clamp electrophysiological assays Cd1a inhibited rat Cav2.2 with similar potency (IC50 3 µM) without influencing the voltage dependence of Cav2.2 activation gating, suggesting that Cd1a doesn't act on Cav2.2 as a classical gating modifier toxin. The Cd1a binding site on Cav2.2 did not overlap with that of the pore blocker ω-conotoxin GVIA, but its activity at Cav2.2-mutant indicated that Cd1a shares some molecular determinants with GVIA and MVIIA, localized near the pore region. Cd1a also inhibited human Nav1.1-1.2 and Nav1.7-1.8 (IC50 0.1-6.9 µM) but not Nav1.3-1.6 (IC50 > 30 µM) in fluorimetric assays. In patch-clamp assays, Cd1a strongly inhibited human Nav1.7 (IC50 16 nM) and produced a 29 mV depolarising shift in Nav1.7 voltage dependence of activation. Cd1a (400 pmol) fully reversed Nav1.7-evoked pain behaviours in mice without producing side effects. In conclusion, Cd1a inhibited two anti-nociceptive targets, appearing to interfere with Cav2.2 inactivation gating, associated with the Cav2.2 α-subunit pore, while altering the activation gating of Nav1.7. Cd1a was inactive at some of the Nav and Cav channels expressed in skeletal and cardiac muscles and nodes of Ranvier, apparently contributing to the lack of side effects at efficacious doses, and suggesting potential as a lead for development of peripheral pain treatments.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Venenos de Aranha / Aranhas / Analgésicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Venenos de Aranha / Aranhas / Analgésicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article