Your browser doesn't support javascript.
loading
Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.
Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B.
Afiliação
  • Albert BJ; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Pahng SH; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Alaniva N; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Sesti EL; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Rand PW; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Saliba EP; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Scott FJ; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Choi EJ; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Barnes AB; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA. Electronic address: barnesab@wustl.edu.
J Magn Reson ; 283: 71-78, 2017 10.
Article em En | MEDLINE | ID: mdl-28888182
Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectroscopia de Ressonância Magnética / Nitrogênio Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectroscopia de Ressonância Magnética / Nitrogênio Idioma: En Ano de publicação: 2017 Tipo de documento: Article