Your browser doesn't support javascript.
loading
Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons.
Rumora, Amy E; Lentz, Stephen I; Hinder, Lucy M; Jackson, Samuel W; Valesano, Andrew; Levinson, Gideon E; Feldman, Eva L.
Afiliação
  • Rumora AE; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Lentz SI; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
  • Hinder LM; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Jackson SW; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Valesano A; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Levinson GE; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Feldman EL; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; efeldman@umich.edu.
FASEB J ; 32(1): 195-207, 2018 01.
Article em En | MEDLINE | ID: mdl-28904018
ABSTRACT
Mitochondrial trafficking plays a central role in dorsal root ganglion (DRG) neuronal cell survival and neurotransmission by transporting mitochondria from the neuronal cell body throughout the bundles of DRG axons. In type 2 diabetes (T2DM), dyslipidemia and hyperglycemia damage DRG neurons and induce mitochondrial dysfunction; however, the impact of free fatty acids and glucose on mitochondrial trafficking in DRG neurons remains unknown. To evaluate the impact of free fatty acids compared to hyperglycemia on mitochondrial transport, primary adult mouse DRG neuron cultures were treated with physiologic concentrations of palmitate and glucose and assessed for alterations in mitochondrial trafficking, mitochondrial membrane potential, and mitochondrial bioenergetics. Palmitate treatment significantly reduced the number of motile mitochondria in DRG axons, but physiologic concentrations of glucose did not impair mitochondrial trafficking dynamics. Palmitate-treated DRG neurons also exhibited a reduction in mitochondrial velocity, and impaired mitochondrial trafficking correlated with mitochondrial depolarization in palmitate-treated DRG neurons. Finally, we found differential bioenergetic effects of palmitate and glucose on resting and energetically challenged mitochondria in DRG neurons. Together, these results suggest that palmitate induces DRG neuron mitochondrial depolarization, inhibiting axonal mitochondrial trafficking and altering mitochondrial bioenergetic capacity.-Rumora, A. E., Lentz, S. I., Hinder, L. M., Jackson, S. W., Valesano, A., Levinson, G. E., Feldman, E. L. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Receptoras Sensoriais / Dislipidemias / Mitocôndrias Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Receptoras Sensoriais / Dislipidemias / Mitocôndrias Idioma: En Ano de publicação: 2018 Tipo de documento: Article