Your browser doesn't support javascript.
loading
Silicone Substrate with Collagen and Carbon Nanotubes Exposed to Pulsed Current for MSC Osteodifferentiation.
Jamal, Daniyal; de Guzman, Roche C.
Afiliação
  • Jamal D; Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA.
  • de Guzman RC; Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA.
Int J Biomater ; 2017: 3684812, 2017.
Article em En | MEDLINE | ID: mdl-28912813
Autologous human adipose tissue-derived mesenchymal stem cells (MSCs) have the potential for clinical translation through their induction into osteoblasts for regeneration. Bone healing can be driven by biophysical stimulation using electricity for activating quiescent adult stem cells. It is hypothesized that application of electric current will enhance their osteogenic differentiation, and addition of conductive carbon nanotubes (CNTs) to the cell substrate will provide increased efficiency in current transmission. Cultured MSCs were seeded and grown onto fabricated silicone-based composites containing collagen and CNT fibers. Chemical inducers, namely, glycerol phosphate, dexamethasone, and vitamin C, were then added to the medium, and pulsatile submilliampere electrical currents (about half mA for 5 cycles at 4 mHz, twice a week) were applied for two weeks. Calcium deposition indicative of MSC differentiation and osteoblastic activity was quantified through Alizarin Red S and spectroscopy. It was found that pulsed current significantly increased osteodifferentiation on silicone-collagen films without CNTs. Under no external current, the presence of 10% (m/m) CNTs led to a significant and almost triple upregulation of calcium deposition. Both CNTs and current parameters did not appear to be synergistic. These conditions of enhanced osteoblastic activities may further be explored ultimately towards future therapeutic use of MSCs.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article