Your browser doesn't support javascript.
loading
Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density.
Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin.
Afiliação
  • Rausch AM; Chair of Materials Science and Engineering for Metals (WTM), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, D-91058 Erlangen, Germany. alexander.m.rausch@fau.de.
  • Küng VE; Chair of Materials Science and Engineering for Metals (WTM), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, D-91058 Erlangen, Germany. vera.kueng@fau.de.
  • Pobel C; Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack-Str. 81, D-90762 Fürth, Germany. christoph.pobel@fau.de.
  • Markl M; Chair of Materials Science and Engineering for Metals (WTM), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, D-91058 Erlangen, Germany. matthias.markl@fau.de.
  • Körner C; Chair of Materials Science and Engineering for Metals (WTM), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, D-91058 Erlangen, Germany. carolin.koerner@fau.de.
Materials (Basel) ; 10(10)2017 Sep 22.
Article em En | MEDLINE | ID: mdl-28937633
ABSTRACT
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article