Your browser doesn't support javascript.
loading
Early snowmelt significantly enhances boreal springtime carbon uptake.
Pulliainen, Jouni; Aurela, Mika; Laurila, Tuomas; Aalto, Tuula; Takala, Matias; Salminen, Miia; Kulmala, Markku; Barr, Alan; Heimann, Martin; Lindroth, Anders; Laaksonen, Ari; Derksen, Chris; Mäkelä, Annikki; Markkanen, Tiina; Lemmetyinen, Juha; Susiluoto, Jouni; Dengel, Sigrid; Mammarella, Ivan; Tuovinen, Juha-Pekka; Vesala, Timo.
Afiliação
  • Pulliainen J; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland; jouni.pulliainen@fmi.fi.
  • Aurela M; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Laurila T; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Aalto T; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Takala M; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Salminen M; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Kulmala M; Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland.
  • Barr A; Climate Research Division, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada.
  • Heimann M; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada.
  • Lindroth A; Max Planck Institute for Biogeochemistry, 07701 Jena, Germany.
  • Laaksonen A; Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland.
  • Derksen C; Department of Physical Geography and Ecosystems Science, Lund University, SE-22362 Lund, Sweden.
  • Mäkelä A; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Markkanen T; Climate Research Division, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada.
  • Lemmetyinen J; Department of Forest Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
  • Susiluoto J; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Dengel S; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Mammarella I; Finnish Meteorological Institute, FIN-00101 Helsinki, Finland.
  • Tuovinen JP; Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94721.
  • Vesala T; Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland.
Proc Natl Acad Sci U S A ; 114(42): 11081-11086, 2017 10 17.
Article em En | MEDLINE | ID: mdl-28973918
ABSTRACT
We determine the annual timing of spring recovery from space-borne microwave radiometer observations across northern hemisphere boreal evergreen forests for 1979-2014. We find a trend of advanced spring recovery of carbon uptake for this period, with a total average shift of 8.1 d (2.3 d/decade). We use this trend to estimate the corresponding changes in gross primary production (GPP) by applying in situ carbon flux observations. Micrometeorological CO2 measurements at four sites in northern Europe and North America indicate that such an advance in spring recovery would have increased the January-June GPP sum by 29 g⋅C⋅m-2 [8.4 g⋅C⋅m-2 (3.7%)/decade]. We find this sensitivity of the measured springtime GPP to the spring recovery to be in accordance with the corresponding sensitivity derived from simulations with a land ecosystem model coupled to a global circulation model. The model-predicted increase in springtime cumulative GPP was 0.035 Pg/decade [15.5 g⋅C⋅m-2 (6.8%)/decade] for Eurasian forests and 0.017 Pg/decade for forests in North America [9.8 g⋅C⋅m-2 (4.4%)/decade]. This change in the springtime sum of GPP related to the timing of spring snowmelt is quantified here for boreal evergreen forests.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article