Your browser doesn't support javascript.
loading
Gene isoforms as expression-based biomarkers predictive of drug response in vitro.
Safikhani, Zhaleh; Smirnov, Petr; Thu, Kelsie L; Silvester, Jennifer; El-Hachem, Nehme; Quevedo, Rene; Lupien, Mathieu; Mak, Tak W; Cescon, David; Haibe-Kains, Benjamin.
Afiliação
  • Safikhani Z; Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7.
  • Smirnov P; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7.
  • Thu KL; Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7.
  • Silvester J; Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7.
  • El-Hachem N; Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7.
  • Quevedo R; Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7.
  • Lupien M; Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7.
  • Mak TW; Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2W 1R7.
  • Cescon D; Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G1L7.
  • Haibe-Kains B; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G1L7.
Nat Commun ; 8(1): 1126, 2017 10 24.
Article em En | MEDLINE | ID: mdl-29066719
Next-generation sequencing technologies have recently been used in pharmacogenomic studies to characterize large panels of cancer cell lines at the genomic and transcriptomic levels. Among these technologies, RNA-sequencing enable profiling of alternatively spliced transcripts. Given the high frequency of mRNA splicing in cancers, linking this feature to drug response will open new avenues of research in biomarker discovery. To identify robust transcriptomic biomarkers for drug response across studies, we develop a meta-analytical framework combining the pharmacological data from two large-scale drug screening datasets. We use an independent pan-cancer pharmacogenomic dataset to test the robustness of our candidate biomarkers across multiple cancer types. We further analyze two independent breast cancer datasets and find that specific isoforms of IGF2BP2, NECTIN4, ITGB6, and KLHDC9 are significantly associated with AZD6244, lapatinib, erlotinib, and paclitaxel, respectively. Our results support isoform expressions as a rich resource for biomarkers predictive of drug response.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Farmacogenética / Ensaios de Seleção de Medicamentos Antitumorais / Biomarcadores / Isoformas de Proteínas / Neoplasias Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Farmacogenética / Ensaios de Seleção de Medicamentos Antitumorais / Biomarcadores / Isoformas de Proteínas / Neoplasias Idioma: En Ano de publicação: 2017 Tipo de documento: Article