Your browser doesn't support javascript.
loading
NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage.
Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W.
Afiliação
  • Casas AI; Department of Pharmacology and Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands.
  • Geuss E; Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany.
  • Kleikers PWM; Department of Pharmacology and Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands.
  • Mencl S; Department of Neurology, University Clinics Essen, D-45147 Essen, Germany.
  • Herrmann AM; Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
  • Buendia I; Instituto Teofilo Hernando, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
  • Egea J; Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain.
  • Meuth SG; Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
  • Lopez MG; Instituto Teofilo Hernando, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
  • Kleinschnitz C; Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany; h.schmidt@maastrichtuniversity.nl christoph.kleinschnitz@uk-essen.de.
  • Schmidt HHHW; Department of Neurology, University Clinics Essen, D-45147 Essen, Germany.
Proc Natl Acad Sci U S A ; 114(46): 12315-12320, 2017 11 14.
Article em En | MEDLINE | ID: mdl-29087944
ABSTRACT
Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Isquemia Encefálica / Isquemia Miocárdica / NADPH Oxidase 4 Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Isquemia Encefálica / Isquemia Miocárdica / NADPH Oxidase 4 Idioma: En Ano de publicação: 2017 Tipo de documento: Article