Your browser doesn't support javascript.
loading
Hidden Magnetic States Emergent Under Electric Field, In A Room Temperature Composite Magnetoelectric Multiferroic.
Clarkson, J D; Fina, I; Liu, Z Q; Lee, Y; Kim, J; Frontera, C; Cordero, K; Wisotzki, S; Sanchez, F; Sort, J; Hsu, S L; Ko, C; Aballe, L; Foerster, M; Wu, J; Christen, H M; Heron, J T; Schlom, D G; Salahuddin, S; Kioussis, N; Fontcuberta, J; Marti, X; Ramesh, R.
Afiliação
  • Clarkson JD; Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
  • Fina I; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Liu ZQ; Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
  • Lee Y; Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee, 37831, USA.
  • Kim J; Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
  • Frontera C; Department of Physics, California State University, Northridge, California, 91330-8268, USA.
  • Cordero K; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Wisotzki S; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Sanchez F; Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120, Halle (Saale), Germany.
  • Sort J; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Hsu SL; Departament de Física, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
  • Ko C; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010, Barcelona, Spain.
  • Aballe L; Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
  • Foerster M; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
  • Wu J; Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
  • Christen HM; ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, 08290, Spain.
  • Heron JT; ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, 08290, Spain.
  • Schlom DG; Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
  • Salahuddin S; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
  • Kioussis N; Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee, 37831, USA.
  • Fontcuberta J; Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14850, USA.
  • Marti X; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
  • Ramesh R; Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14850, USA.
Sci Rep ; 7(1): 15460, 2017 11 13.
Article em En | MEDLINE | ID: mdl-29133957
The ability to control a magnetic phase with an electric field is of great current interest for a variety of low power electronics in which the magnetic state is used either for information storage or logic operations. Over the past several years, there has been a considerable amount of research on pathways to control the direction of magnetization with an electric field. More recently, an alternative pathway involving the change of the magnetic state (ferromagnet to antiferromagnet) has been proposed. In this paper, we demonstrate electric field control of the Anomalous Hall Transport in a metamagnetic FeRh thin film, accompanying an antiferromagnet (AFM) to ferromagnet (FM) phase transition. This approach provides us with a pathway to "hide" or "reveal" a given ferromagnetic region at zero magnetic field. By converting the AFM phase into the FM phase, the stray field, and hence sensitivity to external fields, is decreased or eliminated. Using detailed structural analyses of FeRh films of varying crystalline quality and chemical order, we relate the direct nanoscale origins of this memory effect to site disorder as well as variations of the net magnetic anisotropy of FM nuclei. Our work opens pathways toward a new generation of antiferromagnetic - ferromagnetic interactions for spintronics.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article