Your browser doesn't support javascript.
loading
Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability.
Nakao, Akito; Miyazaki, Naoyuki; Ohira, Koji; Hagihara, Hideo; Takagi, Tsuyoshi; Usuda, Nobuteru; Ishii, Shunsuke; Murata, Kazuyoshi; Miyakawa, Tsuyoshi.
Afiliação
  • Nakao A; Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
  • Miyazaki N; National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
  • Ohira K; Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Japan.
  • Hagihara H; Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
  • Takagi T; Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
  • Usuda N; RIKEN Tsukuba Institute, Tsukuba, Japan.
  • Ishii S; Department of Anatomy II, Fujita Health University School of Medicine, Toyoake, Japan.
  • Murata K; RIKEN Tsukuba Institute, Tsukuba, Japan.
  • Miyakawa T; National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
Mol Brain ; 10(1): 60, 2017 Dec 12.
Article em En | MEDLINE | ID: mdl-29233179
Accumulating evidence suggests that subcellular-scale structures such as dendritic spine and mitochondria may be involved in the pathogenesis/pathophysiology of schizophrenia and intellectual disability. Previously, we proposed mice lacking Schnurri-2 (Shn2; also called major histocompatibility complex [MHC]-binding protein 2 [MBP-2], or human immunodeficiency virus type I enhancer binding protein 2 [HIVEP2]) as a schizophrenia and intellectual disability model with mild chronic inflammation. In the mutants' brains, there are increases in C4b and C1q genes, which are considered to mediate synapse elimination during postnatal development. However, morphological properties of subcellular-scale structures such as dendritic spine in Shn2 knockout (KO) mice remain unknown. In this study, we conducted three-dimensional morphological analyses in subcellular-scale structures in dentate gyrus granule cells of Shn2 KO mice by serial block-face scanning electron microscopy. Shn2 KO mice showed immature dendritic spine morphology characterized by increases in spine length and decreases in spine diameter. There was a non-significant tendency toward decrease in spine density of Shn2 KO mice over wild-type mice, and spine volume was indistinguishable between genotypes. Shn2 KO mice exhibited a significant reduction in GluR1 expression and a nominally significant decrease in SV2 expression, while PSD95 expression had a non-significant tendency to decrease in Shn2 KO mice. There were significant decreases in dendrite diameter, nuclear volume, and the number of constricted mitochondria in the mutants. Additionally, neuronal density was elevated in Shn2 KO mice. These results suggest that Shn2 KO mice serve as a unique tool for investigating morphological abnormalities of subcellular-scale structures in schizophrenia, intellectual disability, and its related disorders.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esquizofrenia / Giro Denteado / Proteínas de Ligação a DNA / Deficiência Intelectual Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esquizofrenia / Giro Denteado / Proteínas de Ligação a DNA / Deficiência Intelectual Idioma: En Ano de publicação: 2017 Tipo de documento: Article