Your browser doesn't support javascript.
loading
Cnidarian Primary Cell Culture as a Tool to Investigate the Effect of Thermal Stress at Cellular Level.
Ventura, P; Toullec, G; Fricano, C; Chapron, L; Meunier, V; Röttinger, E; Furla, P; Barnay-Verdier, S.
Afiliação
  • Ventura P; Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France.
  • Toullec G; Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France.
  • Fricano C; Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France.
  • Chapron L; Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France.
  • Meunier V; Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB, Observatoire Océanologique, Banyuls/Mer, France.
  • Röttinger E; Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France.
  • Furla P; CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France.
  • Barnay-Verdier S; Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France.
Mar Biotechnol (NY) ; 20(2): 144-154, 2018 Apr.
Article em En | MEDLINE | ID: mdl-29313151
ABSTRACT
In the context of global change, symbiotic cnidarians are largely affected by seawater temperature elevation leading to symbiosis breakdown. This process, also called bleaching, is triggered by the dysfunction of the symbiont photosystems causing an oxidative stress and cell death to both symbiont and host cells. In our study, we wanted to elucidate the intrinsic capacity of isolated animal cells to deal with thermal stress in the absence of symbiont. In that aim, we have characterized an animal primary cell culture form regenerating tentacles of the temperate sea anemone Anemonia viridis. We first compared the potential of whole tissue tentacle or separated epidermal or gastrodermal monolayers as tissue sources to settle animal cell cultures. Interestingly, only isolated cells extracted from whole tentacles allowed establishing a viable and proliferative primary cell culture throughout 31 days. The analysis of the expression of tissue-specific and pluripotency markers defined cultivated cells as differentiated cells with gastrodermal origin. The characterization of the animal primary cell culture allowed us to submit the obtained gastrodermal cells to hyperthermal stress (+ 5 and + 8 °C) during 1 and 7 days. Though cell viability was not affected at both hyperthermal stress conditions, cell growth drastically decreased. In addition, only a + 8 °C hyperthermia induced a transient increase of antioxidant defences at 1 day but no ubiquitin or carbonylation protein damages. These results demonstrated an intrinsic resistance of cnidarian gastrodermal cells to hyperthermal stress and then confirmed the role of symbionts in the hyperthermia sensitivity leading to bleaching.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anêmonas-do-Mar / Cultura Primária de Células Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anêmonas-do-Mar / Cultura Primária de Células Idioma: En Ano de publicação: 2018 Tipo de documento: Article