Your browser doesn't support javascript.
loading
RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor-ß and Increasing Resistance to Apoptosis.
Hagiwara, Shinji; Sourris, Karly; Ziemann, Mark; Tieqiao, Wu; Mohan, Muthukumar; McClelland, Aaron D; Brennan, Eoin; Forbes, Josephine; Coughlan, Melinda; Harcourt, Brooke; Penfold, Sally; Wang, Bo; Higgins, Gavin; Pickering, Raelene; El-Osta, Assam; Thomas, Merlin C; Cooper, Mark E; Kantharidis, Phillip.
Afiliação
  • Hagiwara S; Department of Diabetes, Monash University, Melbourne, Australia.
  • Sourris K; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Ziemann M; Department of Diabetes, Monash University, Melbourne, Australia.
  • Tieqiao W; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Mohan M; Department of Diabetes, Monash University, Melbourne, Australia.
  • McClelland AD; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Brennan E; Department of Diabetes, Monash University, Melbourne, Australia.
  • Forbes J; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Coughlan M; Department of Diabetes, Monash University, Melbourne, Australia.
  • Harcourt B; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Penfold S; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Wang B; Department of Diabetes, Monash University, Melbourne, Australia.
  • Higgins G; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Pickering R; Mater Clinical School, University of Queensland, St. Lucia, Brisbane, Australia.
  • El-Osta A; Department of Diabetes, Monash University, Melbourne, Australia.
  • Thomas MC; JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  • Cooper ME; Centre for Hormone Research, Murdoch Children's Research Institute, Melbourne, Australia.
  • Kantharidis P; Department of Diabetes, Monash University, Melbourne, Australia.
Diabetes ; 67(5): 960-973, 2018 05.
Article em En | MEDLINE | ID: mdl-29449307
ABSTRACT
Signaling via the receptor of advanced glycation end products (RAGE)-though complex and not fully elucidated in the setting of diabetes-is considered a key injurious pathway in the development of diabetic nephropathy (DN). We report here that RAGE deletion resulted in increased expression of fibrotic markers (collagen I and IV, fibronectin) and the inflammatory marker MCP-1 in primary mouse mesangial cells (MCs) and in kidney cortex. RNA sequencing analysis in MCs from RAGE-/- and wild-type mice confirmed these observations. Nevertheless, despite these gene expression changes, decreased responsiveness to transforming growth factor-ß was identified in RAGE-/- mice. Furthermore, RAGE deletion conferred a more proliferative phenotype in MCs and reduced susceptibility to staurosporine-induced apoptosis. RAGE restoration experiments in RAGE-/- MCs largely reversed these gene expression changes, resulting in reduced expression of fibrotic and inflammatory markers. This study highlights that protection against DN in RAGE knockout mice is likely to be due in part to the decreased responsiveness to growth factor stimulation and an antiapoptotic phenotype in MCs. Furthermore, it extends our understanding of the role of RAGE in the progression of DN, as RAGE seems to play a key role in modulating the sensitivity of the kidney to injurious stimuli such as prosclerotic cytokines.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Apoptose / Diabetes Mellitus Experimental / Nefropatias Diabéticas / Células Mesangiais / Receptor para Produtos Finais de Glicação Avançada / Córtex Renal Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Apoptose / Diabetes Mellitus Experimental / Nefropatias Diabéticas / Células Mesangiais / Receptor para Produtos Finais de Glicação Avançada / Córtex Renal Idioma: En Ano de publicação: 2018 Tipo de documento: Article