Your browser doesn't support javascript.
loading
Vessel scaling in evergreen angiosperm leaves conforms with Murray's law and area-filling assumptions: implications for plant size, leaf size and cold tolerance.
Gleason, Sean M; Blackman, Chris J; Gleason, Scott T; McCulloh, Katherine A; Ocheltree, Troy W; Westoby, Mark.
Afiliação
  • Gleason SM; Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA.
  • Blackman CJ; Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA.
  • Gleason ST; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
  • McCulloh KA; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
  • Ocheltree TW; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
  • Westoby M; University Corporation for Atmospheric Research (UCAR), 3300 Mitchell Lane, Boulder, CO, 80301, USA.
New Phytol ; 218(4): 1360-1370, 2018 06.
Article em En | MEDLINE | ID: mdl-29603233
ABSTRACT
Water transport in leaf vasculature is a fundamental process affecting plant growth, ecological interactions and ecosystem productivity, yet the architecture of leaf vascular networks is poorly understood. Although Murray's law and the West-Brown-Enquist (WBE) theories predict convergent scaling of conduit width and number, it is not known how conduit scaling is affected by habitat aridity or temperature. We measured the scaling of leaf size, conduit width and conduit number within the leaves of 36 evergreen Angiosperms spanning a large range in aridity and temperature in eastern Australia. Scaling of conduit width and number in midribs and 2° veins did not differ across species and habitats (P > 0.786), and did not differ from that predicted by Murray's law (P = 0.151). Leaf size was strongly correlated with the hydraulic radius of petiole conduits (r2  = 0.83, P < 0.001) and did not differ among habitats (P > 0.064), nor did the scaling exponent differ significantly from that predicted by hydraulic theory (P = 0.086). The maximum radius of conduits in petioles was positively correlated with the temperature of the coldest quarter (r2  = 0.67; P < 0.001), suggesting that habitat temperature restricts the occurrence of wide-conduit species in cold habitats.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Temperatura Baixa / Folhas de Planta / Magnoliopsida Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Temperatura Baixa / Folhas de Planta / Magnoliopsida Idioma: En Ano de publicação: 2018 Tipo de documento: Article