Your browser doesn't support javascript.
loading
INPP4B overexpression and c-KIT downregulation in human achalasia.
Bonora, E; Bianco, F; Stanzani, A; Giancola, F; Astolfi, A; Indio, V; Evangelisti, C; Martelli, A M; Boschetti, E; Lugaresi, M; Ioannou, A; Torresan, F; Stanghellini, V; Clavenzani, P; Seri, M; Moonen, A; Van Beek, K; Wouters, M; Boeckxstaens, G E; Zaninotto, G; Mattioli, S; De Giorgio, R.
Afiliação
  • Bonora E; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Bianco F; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Stanzani A; Department of Medical and Veterinary Sciences, DIMEVET, University of Bologna, Bologna, Italy.
  • Giancola F; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Astolfi A; Department of Medical and Veterinary Sciences, DIMEVET, University of Bologna, Bologna, Italy.
  • Indio V; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Evangelisti C; Department of Medical and Veterinary Sciences, DIMEVET, University of Bologna, Bologna, Italy.
  • Martelli AM; Centro di Ricerca Biomedica Applicata, St.Orsola-Malpighi Hospital, Bologna, Italy.
  • Boschetti E; Interdepartmental Center for Cancer Research "G. Prodi" (CIRC), University of Bologna, Bologna, Italy.
  • Lugaresi M; Interdepartmental Center for Cancer Research "G. Prodi" (CIRC), University of Bologna, Bologna, Italy.
  • Ioannou A; Department of Experimental Medicine, DIMES, University of Bologna, Bologna, Italy.
  • Torresan F; Department of Experimental Medicine, DIMES, University of Bologna, Bologna, Italy.
  • Stanghellini V; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Clavenzani P; Centro di Ricerca Biomedica Applicata, St.Orsola-Malpighi Hospital, Bologna, Italy.
  • Seri M; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Moonen A; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Van Beek K; Department of Digestive System, St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Wouters M; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Boeckxstaens GE; Department of Medical and Veterinary Sciences, DIMEVET, University of Bologna, Bologna, Italy.
  • Zaninotto G; Department of Medical and Surgical Sciences, DIMEC, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy.
  • Mattioli S; Translational Research in GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven University, Leuven, Belgium.
  • De Giorgio R; Translational Research in GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven University, Leuven, Belgium.
Neurogastroenterol Motil ; 30(9): e13346, 2018 09.
Article em En | MEDLINE | ID: mdl-29644781
ABSTRACT

BACKGROUND:

Achalasia is a rare motility disorder characterized by myenteric neuron and interstitial cells of Cajal (ICC) abnormalities leading to deranged/absent peristalsis and lack of relaxation of the lower esophageal sphincter. The mechanisms contributing to neuronal and ICC changes in achalasia are only partially understood. Our goal was to identify novel molecular features occurring in patients with primary achalasia.

METHODS:

Esophageal full-thickness biopsies from 42 (22 females; age range 16-82 years) clinically, radiologically, and manometrically characterized patients with primary achalasia were examined and compared to those obtained from 10 subjects (controls) undergoing surgery for uncomplicated esophageal cancer (or upper stomach disorders). Tissue RNA extracted from biopsies of cases and controls was used for library preparation and sequencing. Data analysis was performed with the "edgeR" option of R-Bioconductor. Data were validated by real-time RT-PCR, western blotting and immunohistochemistry. KEY

RESULTS:

Quantitative transcriptome evaluation and cluster analysis revealed 111 differentially expressed genes, with a P ≤ 10-3 . Nine genes with a P ≤ 10-4 were further validated. CYR61, CTGF, c-KIT, DUSP5, EGR1 were downregulated, whereas AKAP6 and INPP4B were upregulated in patients vs controls. Compared to controls, immunohistochemical analysis revealed a clear increase in INPP4B, whereas c-KIT immunolabeling resulted downregulated. As INPP4B regulates Akt pathway, we used western blot to show that phospho-Akt was significantly reduced in achalasia patients vs controls. CONCLUSIONS & INFERENCES The identification of altered gene expression, including INPP4B, a regulator of the Akt pathway, highlights novel signaling pathways involved in the neuronal and ICC changes underlying primary achalasia.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acalasia Esofágica / Monoéster Fosfórico Hidrolases / Proteínas Proto-Oncogênicas c-kit Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acalasia Esofágica / Monoéster Fosfórico Hidrolases / Proteínas Proto-Oncogênicas c-kit Idioma: En Ano de publicação: 2018 Tipo de documento: Article