Your browser doesn't support javascript.
loading
NOX4 Deletion in Male Mice Exacerbates the Effect of Ethanol on Trabecular Bone and Osteoblastogenesis.
Watt, James; Alund, Alexander W; Pulliam, Casey F; Mercer, Kelly E; Suva, Larry J; Chen, Jin-Ran; Ronis, Martin J J.
Afiliação
  • Watt J; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), U
  • Alund AW; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), U
  • Pulliam CF; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), U
  • Mercer KE; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), U
  • Suva LJ; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), U
  • Chen JR; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), U
  • Ronis MJJ; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), U
J Pharmacol Exp Ther ; 366(1): 46-57, 2018 07.
Article em En | MEDLINE | ID: mdl-29653963
ABSTRACT
Chronic alcohol consumption increases bone resorption and decreases bone formation. A major component of ethanol (EtOH) pathology in bone is the generation of excess reactive oxygen species (ROS). The ROS-generating NADPH oxidase-4 (NOX4) is proposed to drive much of the EtOH-induced suppression of bone formation. Here, 13-week-old male wild-type (WT) and NOX4-/- mice were pair fed (PF) a high-fat (35%), Lieber-DeCarli liquid diet with or without EtOH at 30% of their total calories for 12 weeks. Micro-computed tomography analysis demonstrated significant decreases in trabecular bone volume/total volume (BV/TV) percentage and cortical thickness in WT, EtOH-fed mice compared with PF controls. EtOH-fed NOX4-/- mice also displayed decreased trabecular BV/TV and trabecular number compared with PF (P < 0.05). However, NOX4-/- mice were protected against EtOH-induced decreases in cortical thickness (P < 0.05) and decreases in collagen1 and osteocalcin mRNA expression in cortical bone (P < 0.05). In WT and NOX4-/- vertebral bone, EtOH suppressed expression of Wnt signaling components that promote osteoblast maturation. A role for NOX4 in EtOH inhibition of osteoblast differentiation was further demonstrated by protection against EtOH inhibition of osteoblastogenesis in ex vivo bone marrow cultures from NOX4-/-, but not p47phox-/- mice lacking active NADPH oxidase-2. However, bone marrow cultures from NOX4-/- mice formed fewer osteoblastic colonies compared with WT cultures (P < 0.05), suggesting a role for NOX4 in the maintenance of mesenchymal progenitor cell populations. These data suggest that NOX4 deletion is partially protective against EtOH effects on osteoblast differentiation, but may predispose bone to osteogenic impairments.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoblastos / Deleção de Genes / Osso Esponjoso / NADPH Oxidase 4 Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoblastos / Deleção de Genes / Osso Esponjoso / NADPH Oxidase 4 Idioma: En Ano de publicação: 2018 Tipo de documento: Article