Your browser doesn't support javascript.
loading
ABCG5 and ABCG8: more than a defense against xenosterols.
Patel, Shailendra B; Graf, Gregory A; Temel, Ryan E.
Afiliação
  • Patel SB; Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH 45219 sbpatel@uc.edu Gregory.graf@uky.edu ryan.temel@uky.edu.
  • Graf GA; Department of Pharmaceutical Sciences and Saha Cardiovascular Research Center and University of Kentucky, Lexington, KY 40536 sbpatel@uc.edu Gregory.graf@uky.edu ryan.temel@uky.edu.
  • Temel RE; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 sbpatel@uc.edu Gregory.graf@uky.edu ryan.temel@uky.edu.
J Lipid Res ; 59(7): 1103-1113, 2018 07.
Article em En | MEDLINE | ID: mdl-29728459
ABSTRACT
The elucidation of the molecular basis of the rare disease, sitosterolemia, has revolutionized our mechanistic understanding of how dietary sterols are excreted and how cholesterol is eliminated from the body. Two proteins, ABCG5 and ABCG8, encoded by the sitosterolemia locus, work as obligate dimers to pump sterols out of hepatocytes and enterocytes. ABCG5/ABCG8 are key in regulating whole-body sterol trafficking, by eliminating sterols via the biliary tree as well as the intestinal tract. Importantly, these transporters keep xenosterols from accumulating in the body. The sitosterolemia locus has been genetically associated with lipid levels and downstream atherosclerotic disease, as well as formation of gallstones and the risk of gallbladder cancer. While polymorphic variants raise or lower the risks of these phenotypes, loss of function of this locus leads to more dramatic phenotypes, such as premature atherosclerosis, platelet dysfunction, and thrombocytopenia, and, perhaps, increased endocrine disruption and liver dysfunction. Whether small amounts of xenosterol exposure over a lifetime cause pathology in normal humans with polymorphic variants at the sitosterolemia locus remains largely unexplored. The purpose of this review will be to summarize the current state of knowledge, but also highlight key conceptual and mechanistic issues that remain to be explored.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esteróis / Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP / Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esteróis / Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP / Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP Idioma: En Ano de publicação: 2018 Tipo de documento: Article