Your browser doesn't support javascript.
loading
Pan-genomic approach shows insight of genetic divergence and pathogenic-adaptation of Pasteurella multocida.
Hurtado, Raquel; Carhuaricra, Dennis; Soares, Siomar; Viana, Marcus Vinicius Canário; Azevedo, Vasco; Maturrano, Lenin; Aburjaile, Flávia.
Afiliação
  • Hurtado R; Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  • Carhuaricra D; Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru.
  • Soares S; Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
  • Viana MVC; Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  • Azevedo V; Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  • Maturrano L; Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru.
  • Aburjaile F; Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratory of Plant Genetics and Biotechnology, Federal University of Pernambuco, Recife, Pernambuco, Brazil. Electronic address: faburjaile@gmail.com.
Gene ; 670: 193-206, 2018 Sep 05.
Article em En | MEDLINE | ID: mdl-29802996
ABSTRACT
Pasteurella multocida is a gram-negative, non-motile bacterial pathogen, which is associated with chronic and acute infections as snuffles, pneumonia, atrophic rhinitis, fowl cholera and hemorrhagic septicemia. These diseases affect a wide range of domestic animals, leading to significant morbidity and mortality and causing significant economic losses worldwide. Due to the interest in deciphering the genetic diversity and process adaptive between P. multocida strains, this work aimed was to perform a pan-genome analysis to evidence horizontal gene transfer and positive selection among 23 P. multocida strains isolated from distinct diseases and hosts. The results revealed an open pan-genome containing 3585 genes and an accessory genome presenting 1200 genes. The phylogenomic analysis based on the presence/absence of genes and islands exhibit high levels of plasticity, which reflects a high intraspecific diversity and a possible adaptive mechanism responsible for the specific disease manifestation between the established groups (pneumonia, fowl cholera, hemorrhagic septicemia and snuffles). Additionally, we identified differences in accessory genes among groups, which are involved in sugar metabolism and transport systems, virulence-related genes and a high concentration of hypothetical proteins. However, there was no specific indispensable functional mechanism to decisively correlate the presence of genes and their adaptation to a specific host/disease. Also, positive selection was found only for two genes from sub-group hemorrhagic septicemia, serotype B. This comprehensive comparative genome analysis will provide new insights of horizontal gene transfers that play an essential role in the diversification and adaptation mechanism into P. multocida species to a specific disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções por Pasteurella / Pasteurella multocida / Genômica Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções por Pasteurella / Pasteurella multocida / Genômica Idioma: En Ano de publicação: 2018 Tipo de documento: Article