Your browser doesn't support javascript.
loading
Gefitinib for Epidermal Growth Factor Receptor Activated Osteoarthritis Subpopulation Treatment.
Sun, Heng; Wu, Yan; Pan, Zongyou; Yu, Dongsheng; Chen, Pengfei; Zhang, Xiaoan; Wu, Haoyu; Zhang, Xiaolei; An, Chengrui; Chen, Yishan; Qin, Tian; Lei, Xiaoyue; Yuan, Chunhui; Zhang, Shufang; Zou, Weiguo; Ouyang, Hongwei.
Afiliação
  • Sun H; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Wu Y; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Pan Z; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Yu D; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Chen P; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Zhang X; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Wu H; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Zhang X; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • An C; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Chen Y; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Qin T; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Lei X; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Yuan C; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Zhang S; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
  • Zou W; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
  • Ouyang H; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 3100
EBioMedicine ; 32: 223-233, 2018 Jun.
Article em En | MEDLINE | ID: mdl-29898872
ABSTRACT
Osteoarthritis (OA) is a leading cause of physical disability among aging populations, with no available drugs able to efficiently restore the balance between cartilage matrix synthesis and degradation. Also, OA has not been accurately classified into subpopulations, hindering the development toward personalized precision medicine. In the present study, we identified a subpopulation of OA patients displaying high activation level of epidermal growth factor receptor (EGFR). With Col2a1-creERT2; Egfrf/f mice, it was found that the activation of EGFR, indicated by EGFR phosphorylation (pEGFR), led to the destruction of joints. Excitingly, EGFR inhibition prohibited cartilage matrix degeneration and promoted cartilage regeneration. The Food and Drug Administration (FDA)-approved drug gefitinib could efficiently inhibit EGFR functions in OA joints and restore cartilage structure and function in the mouse model as well as the clinical case report. Overall, our findings suggested the concept of the EGFR activated OA subpopulation and illustrated the mechanism of EGFR signaling in regulating cartilage homeostasis. Gefitinib could be a promising disease-modifying drug for this OA subpopulation treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoartrite / Quinazolinas / Receptores ErbB Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoartrite / Quinazolinas / Receptores ErbB Idioma: En Ano de publicação: 2018 Tipo de documento: Article