Your browser doesn't support javascript.
loading
Electron trapping at SiO2/4H-SiC interface probed by transient capacitance measurements and atomic resolution chemical analysis.
Fiorenza, Patrick; Iucolano, Ferdinando; Nicotra, Giuseppe; Bongiorno, Corrado; Deretzis, Ioannis; La Magna, Antonino; Giannazzo, Filippo; Saggio, Mario; Spinella, Corrado; Roccaforte, Fabrizio.
Afiliação
  • Fiorenza P; Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII, n.5 Zona Industriale, I-95121 Catania, Italy.
Nanotechnology ; 29(39): 395702, 2018 Sep 28.
Article em En | MEDLINE | ID: mdl-29972377
ABSTRACT
Studying the electrical and structural properties of the interface of the gate oxide (SiO2) with silicon carbide (4H-SiC) is a fundamental topic, with important implications for understanding and optimising the performances of metal-oxide-semiconductor field effect transistor (MOSFETs). In this paper, near interface oxide traps (NIOTs) in lateral 4H-SiC MOSFETs were investigated combining transient gate capacitance measurements (C-t) and state of the art scanning transmission electron microscopy in electron energy loss spectroscopy (STEM-EELS) with sub-nm resolution. The C-t measurements as a function of temperature indicated that the effective NIOTs discharge time is temperature independent and electrons from NIOTs are emitted toward the semiconductor via-tunnelling. The NIOTs discharge time was modelled also taking into account the interface state density in a tunnelling relaxation model and it allowed us to locate traps within a tunnelling distance of up to 1.3 nm from the SiO2/4H-SiC interface. On the other hand, sub-nm resolution STEM-EELS revealed the presence of a non-abrupt (NA) SiO2/4H-SiC interface. The NA interface shows the re-arrangement of the carbon atoms in a sub-stoichiometric SiO x matrix. A mixed sp2/sp3 carbon hybridization in the NA interface region suggests that the interfacial carbon atoms have lost their tetrahedral SiC coordination.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article