Your browser doesn't support javascript.
loading
Semiconducting Synthetic Melanin-Based Organic/Inorganic Hybrid Photoanodes for Solar Water Oxidation.
Lee, Cheolmin; Jeon, Dasom; Bae, Sanghyun; Kim, Hyunwoo; Han, Yujin; Lee, Yang Woo; Ryu, Jungki.
Afiliação
  • Lee C; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
  • Jeon D; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
  • Bae S; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
  • Kim H; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
  • Han Y; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
  • Lee YW; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
  • Ryu J; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
ChemSusChem ; 11(19): 3534-3541, 2018 Oct 11.
Article em En | MEDLINE | ID: mdl-29979491
ABSTRACT
We report the development of semiconducting melanin-based organic/inorganic hybrid photoanodes for solar water oxidation. Synthetic melanin thin-film incorporating polyoxometalate (POM) water oxidation catalysts (WOCs) are readily deposited on the surface of various n-type inorganic semiconductors (e.g., Fe2 O3 , BiVO4 , and TiO2 ) by electropolymerization. The deposition of melanin and POM hybrid (MP) thin-film results in the remarkably improved performance of an underlying semiconductor photoanode for solar water oxidation with a significantly increased photocurrent density and decreased onset potential for water oxidation through the formation of a melanin-based p-n heterojunction structure. We believe that this study can provide insights into the design and fabrication of various melanin-based optoelectronic devices by utilizing its unique physicochemical properties.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article