Your browser doesn't support javascript.
loading
Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations.
Duren, Zhana; Chen, Xi; Zamanighomi, Mahdi; Zeng, Wanwen; Satpathy, Ansuman T; Chang, Howard Y; Wang, Yong; Wong, Wing Hung.
Afiliação
  • Duren Z; Department of Statistics, Stanford University, Stanford, CA 94305.
  • Chen X; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305.
  • Zamanighomi M; Department of Statistics, Stanford University, Stanford, CA 94305.
  • Zeng W; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305.
  • Satpathy AT; Department of Statistics, Stanford University, Stanford, CA 94305.
  • Chang HY; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305.
  • Wang Y; Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305.
  • Wong WH; Department of Statistics, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A ; 115(30): 7723-7728, 2018 07 24.
Article em En | MEDLINE | ID: mdl-29987051
When different types of functional genomics data are generated on single cells from different samples of cells from the same heterogeneous population, the clustering of cells in the different samples should be coupled. We formulate this "coupled clustering" problem as an optimization problem and propose the method of coupled nonnegative matrix factorizations (coupled NMF) for its solution. The method is illustrated by the integrative analysis of single-cell RNA-sequencing (RNA-seq) and single-cell ATAC-sequencing (ATAC-seq) data.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Bases de Dados Genéticas / Modelos Genéticos Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Bases de Dados Genéticas / Modelos Genéticos Idioma: En Ano de publicação: 2018 Tipo de documento: Article