Your browser doesn't support javascript.
loading
Ultrafast switch-on dynamics of frequency-tuneable semiconductor lasers.
Kundu, Iman; Wang, Feihu; Qi, Xiaoqiong; Nong, Hanond; Dean, Paul; Freeman, Joshua R; Valavanis, Alexander; Agnew, Gary; Grier, Andrew T; Taimre, Thomas; Li, Lianhe; Indjin, Dragan; Mangeney, Juliette; Tignon, Jérôme; Dhillon, Sukhdeep S; Rakic, Aleksandar D; Cunningham, John E; Linfield, Edmund H; Davies, A Giles.
Afiliação
  • Kundu I; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK. I.Kundu@leeds.ac.uk.
  • Wang F; Laboratoire Pierre Aigrain, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France.
  • Qi X; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Nong H; Laboratoire Pierre Aigrain, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France.
  • Dean P; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Freeman JR; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Valavanis A; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Agnew G; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Grier AT; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Taimre T; School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Li L; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Indjin D; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Mangeney J; Laboratoire Pierre Aigrain, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France.
  • Tignon J; Laboratoire Pierre Aigrain, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France.
  • Dhillon SS; Laboratoire Pierre Aigrain, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France.
  • Rakic AD; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Cunningham JE; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Linfield EH; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
  • Davies AG; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
Nat Commun ; 9(1): 3076, 2018 08 06.
Article em En | MEDLINE | ID: mdl-30082762
ABSTRACT
Single-mode frequency-tuneable semiconductor lasers based on monolithic integration of multiple cavity sections are important components, widely used in optical communications, photonic integrated circuits and other optical technologies. To date, investigations of the ultrafast switching processes in such lasers, essential to reduce frequency cross-talk, have been restricted to the observation of intensity switching over nanosecond-timescales. Here, we report coherent measurements of the ultrafast switch-on dynamics, mode competition and frequency selection in a monolithic frequency-tuneable laser using coherent time-domain sampling of the laser emission. This approach allows us to observe hopping between lasing modes on picosecond-timescales and the temporal evolution of transient multi-mode emission into steady-state single mode emission. The underlying physics is explained through a full multi-mode, temperature-dependent carrier and photon transport model. Our results show that the fundamental limit on the timescales of frequency-switching between competing modes varies with the underlying Vernier alignment of the laser cavity.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article