Your browser doesn't support javascript.
loading
Targeting junctional adhesion molecule-C ameliorates sepsis-induced acute lung injury by decreasing CXCR4+ aged neutrophils.
Hirano, Yohei; Ode, Yasumasa; Ochani, Mahendar; Wang, Ping; Aziz, Monowar.
Afiliação
  • Hirano Y; Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.
  • Ode Y; Department of Emergency and Critical Care Medicine, Juntendo University and Urayasu Hospital, Chiba, Japan.
  • Ochani M; Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.
  • Wang P; Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.
  • Aziz M; Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.
J Leukoc Biol ; 104(6): 1159-1171, 2018 12.
Article em En | MEDLINE | ID: mdl-30088666
ABSTRACT
Sepsis is a severe inflammatory condition associated with high mortality. Transmigration of neutrophils into tissues increases their lifespan to promote deleterious function. Junctional adhesion molecule-C (JAM-C) plays a pivotal role in neutrophil transmigration into tissues. We aim to study the role of JAM-C on the aging of neutrophils to cause sepsis-induced acute lung injury (ALI). Sepsis was induced in C57BL/6J mice by cecal ligation and puncture (CLP) and JAM-C expression in serum was assessed. Bone marrow-derived neutrophils (BMDN) were treated with recombinant mouse JAM-C (rmJAM-C) ex vivo and their viability was assessed. CLP-operated animals were administrated with either isotype IgG or anti-JAM-C Ab at a concentration of 3 mg/kg and after 20 h, aged neutrophils (CXCR4+ ) were assessed in blood and lungs and correlated with systemic injury and inflammatory markers. Soluble JAM-C level in serum was up-regulated during sepsis. Treatment with rmJAM-C inhibited BMDN apoptosis, thereby increasing their lifespan. CLP increased the frequencies of CXCR4+ neutrophils in blood and lungs, while treatment with anti-JAM-C Ab significantly reduced the frequencies of CXCR4+ aged neutrophils. Treatment with anti-JAM-C Ab significantly reduced systemic injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) as well as systemic and lung inflammatory cytokines (IL-6 and IL-1ß) and chemokine (macrophage inflammatory protein-2). The blockade of JAM-C improved lung histology and reduced neutrophil contents in lungs of septic mice. Thus, reduction of the pro-inflammatory aged neutrophils by blockade of JAM-C has a novel therapeutic potential in sepsis-induced ALI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Moléculas de Adesão Celular / Sepse / Lesão Pulmonar Aguda / Terapia de Alvo Molecular / Neutrófilos Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Moléculas de Adesão Celular / Sepse / Lesão Pulmonar Aguda / Terapia de Alvo Molecular / Neutrófilos Idioma: En Ano de publicação: 2018 Tipo de documento: Article