Your browser doesn't support javascript.
loading
Na+ , K+ -ATPase activity in children with autism spectrum disorder: Searching for the reason(s) of its decrease in blood cells.
Bolotta, Alessandra; Visconti, Paola; Fedrizzi, Giorgio; Ghezzo, Alessandro; Marini, Marina; Manunta, Paolo; Messaggio, Elisabetta; Posar, Annio; Vignini, Arianna; Abruzzo, Provvidenza Maria.
Afiliação
  • Bolotta A; From the Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.
  • Visconti P; IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.
  • Fedrizzi G; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
  • Ghezzo A; Chemical Department, IZSLER Zooprophylactic Experimental Institute for Lombardy and Emilia Romagna, Bologna, Italy.
  • Marini M; From the Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.
  • Manunta P; From the Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.
  • Messaggio E; IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.
  • Posar A; University and Hospital Vita-Salute, Milan, Italy.
  • Vignini A; Chair of Nephrology, University Vita Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  • Abruzzo PM; University and Hospital Vita-Salute, Milan, Italy.
Autism Res ; 11(10): 1388-1403, 2018 10.
Article em En | MEDLINE | ID: mdl-30120881
ABSTRACT
Na+ , K+ -ATPase (NKA) activity, which establishes the sodium and potassium gradient across the cell membrane and is instrumental in the propagation of the nerve impulses, is altered in a number of neurological and neuropsychiatric disorders, including autism spectrum disorders (ASD). In the present work, we examined a wide range of biochemical and cellular parameters in the attempt to understand the reason(s) for the severe decrease in NKA activity in erythrocytes of ASD children that we reported previously. NKA activity in leukocytes was found to be decreased independently from alteration in plasma membrane fluidity. The different subunits were evaluated for gene expression in leukocytes and for protein expression in erythrocytes small differences in gene expression between ASD and typically developing children were not apparently paralleled by differences in protein expression. Moreover, no gross difference in erythrocyte plasma membrane oxidative modifications was detectable, although oxidative stress in blood samples from ASD children was confirmed by increased expression of NRF2 mRNA. Interestingly, gene expression of some NKA subunits correlated with clinical features. Excess inhibitory metals or ouabain-like activities, which might account for NKA activity decrease, were ruled out. Plasma membrane cholesterol, but not phosphatidylcholine and phosphatidlserine, was slighty decreased in erythrocytes from ASD children. Although no compelling results were obtained, our data suggest that alteration in the erytrocyte lipid moiety or subtle oxidative modifications in NKA structure are likely candidates for the observed decrease in NKA activity. These findings are discussed in the light of the relevance of NKA in ASD. Autism Res 2018, 11 1388-1403. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY

SUMMARY:

The activity of the cell membrane enzyme NKA, which is instrumental in the propagation of the nerve impulses, is severely decreased in erythrocytes from ASD children and in other brain disorders, yet no explanation has been provided for this observation. We strived to find a biological/biochemical cause of such alteration, but most queries went unsolved because of the complexity of NKA regulation. As NKA activity is altered in many brain disorders, we stress the relevance of studies aimed at understanding its regulation in ASD.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: ATPase Trocadora de Sódio-Potássio / Transtorno do Espectro Autista Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: ATPase Trocadora de Sódio-Potássio / Transtorno do Espectro Autista Idioma: En Ano de publicação: 2018 Tipo de documento: Article