Effect of induced alkalosis on performance during a field-simulated BMX cycling competition.
J Sci Med Sport
; 22(3): 335-341, 2019 Mar.
Article
em En
| MEDLINE
| ID: mdl-30170952
OBJECTIVES: The aim of the present study was to test the effect of sodium bicarbonate (NaHCO3-) ingestion on performance during a simulated competition on a Bicycle Motocross (BMX) track. DESIGN: Double-blind cross-over study. METHODS: Twelve elite male BMX cyclists (age: 19.2±3.4 years; height: 174.2±5.3cm; body mass: 72.4±8.4kg) ingested either NaHCO3- (0.3g.kg-1 body weight) or placebo 90min prior to exercise. The cyclists completed three races in a BMX Olympic track interspersed with 15min of recovery. Blood samples were collected to assess the blood acid-base status. Performance, cardiorespiratory, heart rate variability (HRV) as well as subjective variables were assessed. RESULTS: The main effect of condition (NaHCO3- vs. placebo) was observed in pH, bicarbonate concentration and base excess (p<0.05), with a significant blood alkalosis. No changes were found in time, peak velocity and time to peak velocity for condition (p>0.05). The HRV analysis showed a significant effect of NaHCO3- ingestion, expressed by the rMSSD30 (root mean square of the successive differences) (p<0.001). There was no effect of condition on oxygen uptake, carbon dioxide production, or pulmonary ventilation (p>0.05). Finally, there was no effect of condition for any subjective scale (p>0.05). CONCLUSIONS: We present here the first field condition study to investigate the effect of bicarbonate ingestion over performance in BMX discipline. The results showed that NaHCO3--induced alkalosis did not improve performance in a simulated BMX competition in elite BMX cyclists, although future studies should consider the effects of NaHCO3- on autonomic function as a component of recovery.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Ciclismo
/
Bicarbonato de Sódio
/
Alcalose
/
Desempenho Atlético
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article