Your browser doesn't support javascript.
loading
Transient disruption of mouse home cage activities and assessment of orexin immunoreactivity following concussive- or blast-induced brain injury.
Vu, Patricia A; Tucker, Laura B; Liu, Jiong; McNamara, Eileen H; Tran, Thanhlong; Fu, Amanda H; Kim, Yeonho; McCabe, Joseph T.
Afiliação
  • Vu PA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health S
  • Tucker LB; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, U
  • Liu J; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States.
  • McNamara EH; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health S
  • Tran T; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States.
  • Fu AH; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, U
  • Kim Y; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, U
  • McCabe JT; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health S
Brain Res ; 1700: 138-151, 2018 12 01.
Article em En | MEDLINE | ID: mdl-30176241
ABSTRACT
The employment of explosive weaponry in modern warfare exposes populations to shock wave-induced and impact-related brain injuries. Among the most common clinical complaints resulting from traumatic brain injury (TBI) are sleep-wake disturbances. The current study assessed the acute effects of mild concussive brain injury (CBI) and mild blast wave-induced brain injury (BTBI) on mouse behavior and orexin-A expression. Male C57BL/6J mice were exposed to CBI, BTBI, or sham procedures. Injured animals and their shams were further divided into the following subgroups 24-h survival in standard group (SG) housing, 72-h survival in SG housing, and 72-h survival in Any-Maze cages (AMc). AMc enabled continuous monitoring of home cage activities. BTBI caused significant but transient decreases in wheel running and ingestive behaviors 24 h post-injury (PI), while CBI transiently decreased running and water intake. BTBI resulted in general hypoactivity in the open field (OF) at both PI time points for SG-housed animals. In contrast, CBI did not cause hypoactivity. Mice subjected to CBI traveled more in the center of the OF at both time points PI, suggesting that CBI caused reduced anxiety in mice. Increased activity in the center of the OF was also seen at 24 h PI after BTBI. CBI treatment caused increased CD11b immunostaining. However, neither injury was accompanied by an alteration in the number of orexin-A hypothalamic neurons. Taken together, shock wave exposure and concussive injury transiently reduced mouse activities, but some differences between the two injuries were seen.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos por Explosões / Orexinas / Lesões Encefálicas Traumáticas / Atividade Motora Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos por Explosões / Orexinas / Lesões Encefálicas Traumáticas / Atividade Motora Idioma: En Ano de publicação: 2018 Tipo de documento: Article