Your browser doesn't support javascript.
loading
A multicaloric cooling cycle that exploits thermal hysteresis.
Gottschall, Tino; Gràcia-Condal, Adrià; Fries, Maximilian; Taubel, Andreas; Pfeuffer, Lukas; Mañosa, Lluís; Planes, Antoni; Skokov, Konstantin P; Gutfleisch, Oliver.
Afiliação
  • Gottschall T; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany. t.gottschall@hzdr.de.
  • Gràcia-Condal A; Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. t.gottschall@hzdr.de.
  • Fries M; Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain.
  • Taubel A; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
  • Pfeuffer L; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
  • Mañosa L; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
  • Planes A; Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain.
  • Skokov KP; Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain.
  • Gutfleisch O; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
Nat Mater ; 17(10): 929-934, 2018 10.
Article em En | MEDLINE | ID: mdl-30202111
ABSTRACT
The giant magnetocaloric effect, in which large thermal changes are induced in a material on the application of a magnetic field, can be used for refrigeration applications, such as the cooling of systems from a small to a relatively large scale. However, commercial uptake is limited. We propose an approach to magnetic cooling that rejects the conventional idea that the hysteresis inherent in magnetostructural phase-change materials must be minimized to maximize the reversible magnetocaloric effect. Instead, we introduce a second stimulus, uniaxial stress, so that we can exploit the hysteresis. This allows us to lock-in the ferromagnetic phase as the magnetizing field is removed, which drastically removes the volume of the magnetic field source and so reduces the amount of expensive Nd-Fe-B permanent magnets needed for a magnetic refrigerator. In addition, the mass ratio between the magnetocaloric material and the permanent magnet can be increased, which allows scaling of the cooling power of a device simply by increasing the refrigerant body. The technical feasibility of this hysteresis-positive approach is demonstrated using Ni-Mn-In Heusler alloys. Our study could lead to an enhanced usage of the giant magnetocaloric effect in commercial applications.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article