Your browser doesn't support javascript.
loading
A Bayesian framework for efficient and accurate variant prediction.
Qian, Dajun; Li, Shuwei; Tian, Yuan; Clifford, Jacob W; Sarver, Brice A J; Pesaran, Tina; Gau, Chia-Ling; Elliott, Aaron M; Lu, Hsiao-Mei; Black, Mary Helen.
Afiliação
  • Qian D; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Li S; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Tian Y; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Clifford JW; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Sarver BAJ; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Pesaran T; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Gau CL; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Elliott AM; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Lu HM; Ambry Genetics, Aliso Viejo, California, United States of America.
  • Black MH; Ambry Genetics, Aliso Viejo, California, United States of America.
PLoS One ; 13(9): e0203553, 2018.
Article em En | MEDLINE | ID: mdl-30212499
There is a growing need to develop variant prediction tools capable of assessing a wide spectrum of evidence. We present a Bayesian framework that involves aggregating pathogenicity data across multiple in silico scores on a gene-by-gene basis and multiple evidence statistics in both quantitative and qualitative forms, and performs 5-tiered variant classification based on the resulting probability credible interval. When evaluated in 1,161 missense variants, our gene-specific in silico model-based meta-predictor yielded an area under the curve (AUC) of 96.0% and outperformed all other in silico predictors. Multifactorial model analysis incorporating all available evidence yielded 99.7% AUC, with 22.8% predicted as variants of uncertain significance (VUS). Use of only 3 auto-computed evidence statistics yielded 98.6% AUC with 56.0% predicted as VUS, which represented sufficient accuracy to rapidly assign a significant portion of VUS to clinically meaningful classifications. Collectively, our findings support the use of this framework to conduct large-scale variant prioritization using in silico predictors followed by variant prediction and classification with a high degree of predictive accuracy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Teorema de Bayes Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Teorema de Bayes Idioma: En Ano de publicação: 2018 Tipo de documento: Article