Your browser doesn't support javascript.
loading
Acute molecular effects of pressure-controlled intermittent coronary sinus occlusion in patients with advanced heart failure.
Mohl, Werner; Spitzer, Ernest; Mader, Robert M; Wagh, Vilas; Nguemo, Filomain; Milasinovic, Dejan; Jusic, Alem; Khazen, Cesar; Szodorai, Edit; Birkenberg, Beatrice; Lubec, Gert; Hescheler, Juergen; Serruys, Patrick W.
Afiliação
  • Mohl W; Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
  • Spitzer E; Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.
  • Mader RM; Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
  • Wagh V; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  • Nguemo F; Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany.
  • Milasinovic D; Department of Cardiology, Clinical Center of Serbia, Belgrade, Serbia.
  • Jusic A; Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
  • Khazen C; Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
  • Szodorai E; Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria.
  • Birkenberg B; Department of Anesthesiology and General Intensive Care, Medical University of Vienna, Vienna, Austria.
  • Lubec G; Department of Pharmaceutical Chemistry Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Hescheler J; Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany.
  • Serruys PW; International Centre for Circulatory Health, NHLI, Imperial College London, London, UK.
ESC Heart Fail ; 5(6): 1176-1183, 2018 12.
Article em En | MEDLINE | ID: mdl-30230713
ABSTRACT

AIMS:

Cardiac repair has steered clinical attention and remains an unmet need, because available regenerative therapies lack robust mechanistic evidence. Pressure-controlled intermittent coronary sinus occlusion (PICSO), known to induce angiogenetic and vasoactive molecules as well as to reduce regional ischemia, may activate endogenous regenerative processes in failing myocardium. We aimed to investigate the effects of PICSO in patients with advanced heart failure undergoing cardiac resynchronization therapy. METHODS AND

RESULTS:

Eight out of 32 patients were treated with PICSO, and the remainder served as controls. After electrode testing including left ventricular leads, PICSO was performed for 20 min. To test immediate molecular responses, in both patient groups, coronary venous blood samples were taken at baseline and after 20 min, the time required for the intervention. Sera were tested for microRNAs and growth factors. To test the ability of up-regulated soluble factors on cell proliferation and expression of transcription factors [e.g. Krüppel-like factor 4 (KLF-4)], sera were co-cultured with human cardiomyocytes and fibroblasts. As compared with controls, significant differential expression (differences between pre-values and post-values in relation to both patient cohorts) of microRNA patterns associated with cardiac development was observed with PICSO. Importantly, miR-143 (P < 0.048) and miR-145 (P < 0,047) increased, both targeting a network of transcription factors (including KLF-4) that promote differentiation and repress proliferation of vascular smooth muscle cells. Additionally, an increase of miR-19b (P < 0.019) known to alleviate endothelial cell apoptosis was found, whereas disadvantageous miR-320b (P < 0.023) suspect to impair expression of c-myc, normally provoking cell cycle re-entry in post-mitotic myocytes and miR-25 (P < 0.023), decreased, a target of anti-miR application to improve contractility in the failing heart. Co-cultured post-PICSO sera significantly increased cellular proliferation both in fibroblasts (P < 0.001) and adult cardiomycytes (P < 0.004) sampled from a transplant recipient as compared with controls. Adult cardiomyocytes showed a seven-fold increase of the transcription factor KLF-4 protein when co-cultured with treated sera as compared with controls.

CONCLUSIONS:

Here, we show for the first time that PICSO, a trans-coronary sinus catheter intervention, is associated with an increase in morphogens secreted into cardiac veins, normally present during cardiac development, and a significant induction of cell proliferation. Present findings support the notion that epigenetic modifications, that is, haemodynamic stimuli on venous vascular cells, may reverse myocardial deterioration. Further investigations are needed to decipher the maze of complex interacting molecular pathways in failing myocardium and the potential role of PICSO to reinitiate developmental processes to prevent further myocardial decay eventually reaching clinical significance.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cateterismo Cardíaco / Circulação Coronária / Vasos Coronários / Oclusão com Balão / Seio Coronário / Insuficiência Cardíaca Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cateterismo Cardíaco / Circulação Coronária / Vasos Coronários / Oclusão com Balão / Seio Coronário / Insuficiência Cardíaca Idioma: En Ano de publicação: 2018 Tipo de documento: Article