Your browser doesn't support javascript.
loading
Integrating 3D-printed PHBV/Calcium sulfate hemihydrate scaffold and chitosan hydrogel for enhanced osteogenic property.
Ye, Xiangling; Li, Lihua; Lin, Zefeng; Yang, Weiliang; Duan, Mingyang; Chen, Lingling; Xia, Yuanjun; Chen, Zepeng; Lu, Yao; Zhang, Ying.
Afiliação
  • Ye X; Department of Trauma Orthopedics, Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China; People's Hospital of Kaihua, Quzhou, Zhejiang, 324300, PR China; Guangdong Key Lab of Orthopedic Technology and Implant materials, Key L
  • Li L; Guangdong Key Lab of Orthopedic Technology and Implant materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China.
  • Lin Z; Guangdong Key Lab of Orthopedic Technology and Implant materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China.
  • Yang W; People's Hospital of Kaihua, Quzhou, Zhejiang, 324300, PR China.
  • Duan M; Department of Trauma Orthopedics, Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China.
  • Chen L; Guangdong Key Lab of Orthopedic Technology and Implant materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China.
  • Xia Y; Department of Trauma Orthopedics, Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China.
  • Chen Z; Department of Trauma Orthopedics, Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China.
  • Lu Y; Guangdong Key Lab of Orthopedic Technology and Implant materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China; Department of Orthopedics, Zhujiang Hospital, Southern Medical Univer
  • Zhang Y; Department of Trauma Orthopedics, Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, 510010, PR China. Electronic address: ying_zhang121@163.com.
Carbohydr Polym ; 202: 106-114, 2018 Dec 15.
Article em En | MEDLINE | ID: mdl-30286981
ABSTRACT
We developed the 3D-printed poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium sulfate hemihydrate (PHBV/CaSH) scaffolds by using fused deposition modelling (FDM) technique and then coated the scaffolds with chitosan (CS) acetic acid solution. After drying and neutralization, CS hydrogel was formed on the surface of the scaffolds. The resultant PHBV/CaSH/CS scaffolds could promote the adhesion and proliferation of rat bone marrow stromal cells (rBMSCs) and enhance the osteogenesis of rBMSCs by up-regulating the expression level of osteogenic genes compared to the PHBV and PHBV/CaSH scaffolds. In vivo studies further demonstrated the PHBV/CaSH/CS scaffolds could effectively promote new bone formation. Therefore, integrating 3D-printed PHBV/CaSH scaffold and CS hrydogel represents a novel strategy to promote osteogensis property, showing full potential for bone defects repair.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article