Controlling Dispersion during Single-Cell Polyacrylamide-Gel Electrophoresis in Open Microfluidic Devices.
Anal Chem
; 90(22): 13419-13426, 2018 11 20.
Article
em En
| MEDLINE
| ID: mdl-30346747
New tools for measuring protein expression in individual cells complement single-cell genomics and transcriptomics. To characterize a population of individual mammalian cells, hundreds to thousands of microwells are arrayed on a polyacrylamide-gel-coated glass microscope slide. In this "open" fluidic device format, we explore the feasibility of mitigating diffusional losses during lysis and polyacrylamide-gel electrophoresis (PAGE) through spatial control of the pore-size of the gel layer. To reduce in-plane diffusion-driven dilution of each single-cell lysate during in-microwell chemical lysis, we photopattern and characterize microwells with small-pore-size sidewalls ringing the microwell except at the injection region. To reduce out-of-plane-diffusion-driven-dilution-caused signal loss during both lysis and single-cell PAGE, we scrutinize a selectively permeable agarose lid layer. To reduce injection dispersion, we photopattern and study a stacking-gel feature at the head of each <1 mm separation axis. Lastly, we explore a semienclosed device design that reduces the cross-sectional area of the chip, thus reducing Joule-heating-induced dispersion during single-cell PAGE. As a result, we observed a 3-fold increase in separation resolution during a 30 s separation and a >2-fold enhancement of the signal-to-noise ratio. We present well-integrated strategies for enhancing overall single-cell-PAGE performance.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Eletroforese em Gel de Poliacrilamida
/
Dispositivos Lab-On-A-Chip
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article