Your browser doesn't support javascript.
loading
Co-deposition Kinetics of Polydopamine/Polyethyleneimine Coatings: Effects of Solution Composition and Substrate Surface.
Lv, Yan; Yang, Shang-Jin; Du, Yong; Yang, Hao-Cheng; Xu, Zhi-Kang.
Afiliação
  • Lv Y; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
  • Yang SJ; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
  • Du Y; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
  • Yang HC; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
  • Xu ZK; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
Langmuir ; 34(44): 13123-13131, 2018 11 06.
Article em En | MEDLINE | ID: mdl-30350694
ABSTRACT
Polydopamine-based chemistry has been employed for various surface modifications attributed to the advantages of universality, versatility, and simplicity. Co-deposition of polydopamine (PDA) with polyethyleneimine (PEI) has then been proposed to realize one-step fabrication of functional coatings with improved morphology uniformity, surface hydrophilicity, and chemical stability. Herein, we report the co-deposition kinetics related to the solution composition with different dopamine/PEI ratios, PEI molecular weights, dopamine/PEI concentrations, and the substrate surface with varying chemistry and wettability. The addition of PEI to dopamine solution suppresses the precipitation of PDA aggregates, resulting in an expanded time window of steady co-deposition compared with that of PDA deposition. Low-molecular-weight PEI at low concentration accelerates the co-deposition process, while high-molecular-weight PEI and high concentration of either PEI or dopamine/PEI are detrimental to the co-deposition efficiency. Meanwhile, the surface morphology and chemical composition of the co-deposition coatings can be regulated by the solution conditions during co-deposition. Moreover, obvious deviations in the co-deposition rate and the amount of substrates bearing various functional groups, such as alkyl, phenyl, hydroxyl, and carboxyl, are revealed, which are quite different from PDA deposition. The initial adsorption rates further reflect the change in interactions between the aggregates and these substrates caused by PEI, which follows the sequence of carboxyl > hydroxyl > alkyl > phenyl. These results provide deep insights into the PDA/PEI co-deposition process on various substrates.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article