Unexpected Evolution of Lesion-Recognition Modules in Eukaryotic NER and Kinetoplast DNA Dynamics Proteins from Bacterial Mobile Elements.
iScience
; 9: 192-208, 2018 Nov 30.
Article
em En
| MEDLINE
| ID: mdl-30396152
The provenance of several components of major uniquely eukaryotic molecular machines are increasingly being traced back to prokaryotic biological conflict systems. Here, we demonstrate that the N-terminal single-stranded DNA-binding domain from the anti-restriction protein ArdC, deployed by bacterial mobile elements against their host, was independently acquired twice by eukaryotes, giving rise to the DNA-binding domains of XPC/Rad4 and the Tc-38-like proteins in the stem kinetoplastid. In both instances, the ArdC-N domain tandemly duplicated forming an extensive DNA-binding interface. In XPC/Rad4, the ArdC-N domains (BHDs) also fused to the inactive transglutaminase domain of a peptide-N-glycanase ultimately derived from an archaeal conflict system. Alongside, we delineate several parallel acquisitions from conjugative elements/bacteriophages that gave rise to key components of the kinetoplast DNA (kDNA) replication apparatus. These findings resolve two outstanding questions in eukaryote biology: (1) the origin of the unique DNA lesion-recognition component of NER and (2) origin of the unusual, plasmid-like features of kDNA.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article