Your browser doesn't support javascript.
loading
Conjugative Transposons and Their Cargo Genes Vary across Natural Populations of Rickettsia buchneri Infecting the Tick Ixodes scapularis.
Hagen, Rachael; Verhoeve, Victoria I; Gillespie, Joseph J; Driscoll, Timothy P.
Afiliação
  • Hagen R; Department of Biology, West Virginia University.
  • Verhoeve VI; Department of Biology, West Virginia University.
  • Gillespie JJ; Department of Microbiology and Immunology, University of Maryland School of Medicine.
  • Driscoll TP; Department of Biology, West Virginia University.
Genome Biol Evol ; 10(12): 3218-3229, 2018 12 01.
Article em En | MEDLINE | ID: mdl-30398619
Rickettsia buchneri (formerly Rickettsia endosymbiont of Ixodes scapularis, or REIS) is an obligate intracellular endoparasite of the black-legged tick, the primary vector of Lyme disease in North America. It is noteworthy among the rickettsiae for its relatively large genome (1.8 Mb) and extraordinary proliferation of mobile genetic elements (MGEs), which comprise nearly 35% of its genome. Previous analysis of the R. buchneri genome identified several integrative conjugative elements named Rickettsiales amplified genomic elements (RAGEs); the composition of these RAGEs suggests that continued genomic invasions by MGEs facilitated the proliferation of rickettsial genes related to an intracellular lifestyle. In this study, we compare the genomic diversity at RAGE loci among sequenced rickettsiae that infect three related Ixodes spp., including two strains of R. buchneri and Rickettsia endosymbiont of Ixodes pacificus strain Humboldt, as well as a closely related species R. tamurae infecting Amblyomma testudinarium ticks. We further develop a novel multiplex droplet digital PCR assay and use it to quantify copy number ratios of chromosomal R. buchneri RAGE-A and RAGE-B to the single-copy gene gltA within natural populations of I. scapularis. Our results reveal substantial diversity among R. buchneri at these loci, both within individual ticks as well as in the I. scapularis population at large, demonstrating that genomic rearrangement of MGEs is an active process in these intracellular bacteria.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rickettsia / Amplificação de Genes / Ixodes / Sequências Repetitivas Dispersas Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rickettsia / Amplificação de Genes / Ixodes / Sequências Repetitivas Dispersas Idioma: En Ano de publicação: 2018 Tipo de documento: Article