Your browser doesn't support javascript.
loading
In situ relative self-dependent calibration of electron cyclotron emission imaging via shape matching.
Han, Dongqi; Xie, Jinlin; Hussain, Azam; Gao, Bingxi; Qu, Chengming; Liao, Wang; Xu, Xinhang; Gao, Feixue; Li, Hong; Lan, Tao; Liu, Adi; Zhuang, Ge; Liu, Wandong.
Afiliação
  • Han D; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xie J; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Hussain A; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Gao B; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Qu C; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Liao W; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xu X; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Gao F; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Li H; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Lan T; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Liu A; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhuang G; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Liu W; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
Rev Sci Instrum ; 89(10): 10H119, 2018 Oct.
Article em En | MEDLINE | ID: mdl-30399952
ABSTRACT
Electron Cyclotron Emission Imaging (ECEI) is a diagnostic system which measures 2-D electron temperature profiles with high spatial-temporal resolution. Usually only the normalized electron temperature fluctuations are utilized to investigate the magnetohydrodynamics modes due to the difficulties of ECEI calibration. In this paper, we developed a self-dependent calibration method for 24 × 16 channel high-resolution ECEI on the Experimental Advanced Superconducting Tokamak. The technique of shape matching is applied to solve for the matrix of the calibration coefficients. The calibrated area is further expanded to an occupation ratio of 88% observation area by utilizing the features of sawtooth crash. The result is self-consistent and consistent with calibrated 1D ECE measurement.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article