Your browser doesn't support javascript.
loading
Extracellular and ER-stored Ca2+ contribute to BIRD-2-induced cell death in diffuse large B-cell lymphoma cells.
Bittremieux, Mart; La Rovere, Rita M; Schuermans, Marleen; Luyten, Tomas; Mikoshiba, Katsuhiko; Vangheluwe, Peter; Parys, Jan B; Bultynck, Geert.
Afiliação
  • Bittremieux M; 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium.
  • La Rovere RM; 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium.
  • Schuermans M; 2Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000 Belgium.
  • Luyten T; 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium.
  • Mikoshiba K; 3The Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.
  • Vangheluwe P; 2Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000 Belgium.
  • Parys JB; 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium.
  • Bultynck G; 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium.
Cell Death Discov ; 4: 101, 2018.
Article em En | MEDLINE | ID: mdl-30416758
ABSTRACT
The anti-apoptotic protein Bcl-2 is upregulated in several cancers, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL). In a subset of these cancer cells, Bcl-2 blocks Ca2+-mediated apoptosis by suppressing the function of inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) located at the endoplasmic reticulum (ER). A peptide tool, called Bcl-2/IP3 receptor disruptor-2 (BIRD-2), was developed to disrupt Bcl-2/IP3R complexes, triggering pro-apoptotic Ca2+ signals and killing Bcl-2-dependent cancer cells. In DLBCL cells, BIRD-2 sensitivity depended on the expression level of IP3R2 channels and constitutive IP3 signaling downstream of the B-cell receptor. However, other cellular pathways probably also contribute to BIRD-2-provoked cell death. Here, we examined whether BIRD-2-induced apoptosis depended on extracellular Ca2+ and more particularly on store-operated Ca2+ entry (SOCE), a Ca2+-influx pathway activated upon ER-store depletion. Excitingly, DPB162-AE, a SOCE inhibitor, suppressed BIRD-2-induced cell death in DLBCL cells. However, DPB162-AE not only inhibits SOCE but also depletes the ER Ca2+ store. Treatment of the cells with YM-58483 and GSK-7975A, two selective SOCE inhibitors, did not protect against BIRD-2-induced apoptosis. Similar data were obtained by knocking down STIM1 using small interfering RNA. Yet, extracellular Ca2+ contributed to BIRD-2 sensitivity in DLBCL, since the extracellular Ca2+ buffer ethylene glycol tetraacetic acid (EGTA) blunted BIRD-2-triggered apoptosis. The protective effects observed with DPB162-AE are likely due to ER Ca2+-store depletion, since a similar protective effect could be obtained using the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. Thus, both the ER Ca2+-store content and extracellular Ca2+, but not SOCE, are critical factors underlying BIRD-2-provoked cell death.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article