Your browser doesn't support javascript.
loading
Analysis of spinal and muscle pathology in transgenic mice overexpressing wild-type and ALS-linked mutant MATR3.
Moloney, Christina; Rayaprolu, Sruti; Howard, John; Fromholt, Susan; Brown, Hilda; Collins, Matt; Cabrera, Mariela; Duffy, Colin; Siemienski, Zoe; Miller, Dave; Borchelt, David R; Lewis, Jada.
Afiliação
  • Moloney C; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA.
  • Rayaprolu S; Department of Neuroscience, University of Florida, Gainesville, Florida, USA.
  • Howard J; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA.
  • Fromholt S; Department of Neuroscience, University of Florida, Gainesville, Florida, USA.
  • Brown H; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA.
  • Collins M; Department of Neuroscience, University of Florida, Gainesville, Florida, USA.
  • Cabrera M; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA.
  • Duffy C; Department of Neuroscience, University of Florida, Gainesville, Florida, USA.
  • Siemienski Z; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA.
  • Miller D; Department of Neuroscience, University of Florida, Gainesville, Florida, USA.
  • Borchelt DR; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA.
  • Lewis J; Department of Neuroscience, University of Florida, Gainesville, Florida, USA.
Acta Neuropathol Commun ; 6(1): 137, 2018 12 19.
Article em En | MEDLINE | ID: mdl-30563574
ABSTRACT
Mutations in MATR3 have been associated with amyotrophic lateral sclerosis (ALS) as well as a form of distal myopathy termed vocal cord pharyngeal distal myopathy (VCPDM). To begin to understand how mutations in MATR3 may cause disease, here we provide initial characterization of transgenic (Tg) mice expressing human wild-type (WT) MATR3 (MATR3WT) and ALS-mutant F115C MATR3 (MATR3F115C) proteins under the control of the mouse prion promoter (MoPrP). For each construct, we established multiple independent lines of mice that stably transmitted the transgene. Unexpectedly, for all stably-transmitting lines examined, MATR3 transgenic mRNA expression was more robust in muscle, with minimal expression in spinal cord. The levels of transgenic mRNA in muscle did not differ between mice from our lead MATR3F115C line and lead MATR3WT line, but mice from the lead MATR3F115C line had significantly higher levels of MATR3 protein in muscle over the lead MATR3WT line. Mice from the three independent, established lines of MATR3F115C mice developed weakness in both fore- and hind-limbs as early as < 1 months of age; whereas, MATR3WT mice aged to > 20 months were not overtly distinguishable from non-transgenic (NT) littermates based on basic motor phenotype. Muscle of both MATR3WT and MATR3F115C mice showed vacuoles by 2 months of age which worsened by ~ 10 months, but vacuolation was noticeably more severe in MATR3F115C mice. Overall, our results indicate that increasing the levels of MATR3 in muscle can cause pathologic changes associated with myopathy, with MATR3F115C expression causing overt muscle atrophy and a profound motor phenotype. The findings suggest that analysis of muscle pathology in individuals harboring ALS-linked MATR3 mutations should be routinely considered.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medula Espinal / Proteínas de Ligação a RNA / Músculo Esquelético / Proteínas Associadas à Matriz Nuclear / Esclerose Lateral Amiotrófica / Mutação Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medula Espinal / Proteínas de Ligação a RNA / Músculo Esquelético / Proteínas Associadas à Matriz Nuclear / Esclerose Lateral Amiotrófica / Mutação Idioma: En Ano de publicação: 2018 Tipo de documento: Article