Your browser doesn't support javascript.
loading
An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation.
Duarte, Américo G; Catarino, Teresa; White, Gaye F; Lousa, Diana; Neukirchen, Sinje; Soares, Cláudio M; Sousa, Filipa L; Clarke, Thomas A; Pereira, Inês A C.
Afiliação
  • Duarte AG; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
  • Catarino T; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
  • White GF; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
  • Lousa D; Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
  • Neukirchen S; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
  • Soares CM; Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090, Vienna, Austria.
  • Sousa FL; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
  • Clarke TA; Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090, Vienna, Austria.
  • Pereira IAC; Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
Nat Commun ; 9(1): 5448, 2018 12 21.
Article em En | MEDLINE | ID: mdl-30575735
ABSTRACT
The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e- ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sulfatos / Desulfovibrio vulgaris / Vitamina K 2 / Complexo de Proteínas da Cadeia de Transporte de Elétrons / Metabolismo Energético Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sulfatos / Desulfovibrio vulgaris / Vitamina K 2 / Complexo de Proteínas da Cadeia de Transporte de Elétrons / Metabolismo Energético Idioma: En Ano de publicação: 2018 Tipo de documento: Article