Your browser doesn't support javascript.
loading
A one-pot analysis approach to simplify measurements of protein stability and folding kinetics.
Liu, Yi-Kai; Chen, Huei-Yu; Chueh, Pin Ju; Liu, Pei-Fen.
Afiliação
  • Liu YK; Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
  • Chen HY; Institute of Biomedical Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
  • Chueh PJ; Institute of Biomedical Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
  • Liu PF; Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC. Electronic address: pfliu@nchu.edu.tw.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 184-193, 2019 03.
Article em En | MEDLINE | ID: mdl-30578861
To achieve a good understanding of the characteristics of a protein, it is important to study its stability and folding kinetics. Investigations of protein stability have been recently applied to drug-target identification, drug screening, and proteomic studies. The efficiency of the experiments performed to study protein stability and folding kinetics is now a crucial factor that needs to be optimized for these potential applications. However, the standard procedures used to carry out these experiments are usually complicated and time consuming. Large number of measurements is the bottleneck that limits the application of protein folding to large-scale experiments. To overcome this limitation, we developed a method denoted as "one-pot analysis" which is based on taking a single measurement from a mixture of samples rather than from every sample. We combined one-pot analysis with pulse proteolysis to determine the effects of the binding of maltose to maltose-binding protein on the protein folding properties. After carrying out a simple optimization, we demonstrated that protein stability or unfolding kinetics could be measured accurately with just one detection measurement. We then further applied the optimized conditions to cellular thermal shift assay (CETSA). Combining one-pot analysis with CETSA led to a successful determination of the effects of the binding of methotrexate to dihydrofolate reductase in HCT116 cancer cells. Our results demonstrated the applicability of one-pot analysis to energetics-based methods for studying protein folding. We expect the combination of one-pot analysis and energetics-based methods to significantly benefit studies such as drug-target identification, proteomic investigations, and drug screening.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dobramento de Proteína / Estabilidade Proteica Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dobramento de Proteína / Estabilidade Proteica Idioma: En Ano de publicação: 2019 Tipo de documento: Article