Your browser doesn't support javascript.
loading
Gamma Distribution Model in the Evaluation of Breast Cancer Through Diffusion-Weighted MRI: A Preliminary Study.
Borlinhas, Filipa; Loução, Ricardo; C Conceição, Raquel; Ferreira, Hugo A.
Afiliação
  • Borlinhas F; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
  • Loução R; Institute of Neuroscience and Medicine (INM - 4), Forschungszentrum Jülich, Jülich, Germany.
  • C Conceição R; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
  • Ferreira HA; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
J Magn Reson Imaging ; 50(1): 230-238, 2019 07.
Article em En | MEDLINE | ID: mdl-30589146
BACKGROUND: The gamma distribution (GD) model is based on the statistical distribution of the apparent diffusion coefficient (ADC) parameter. The GD model is expected to reflect the probability of the distribution of water molecule mobility in different regions of tissue, but also the intra- and extracellular diffusion and perfusion components (f1 , f2 , f3 fractions). PURPOSE: To assess the GD model in the characterization and diagnostic performance of breast lesions. STUDY TYPE: Prospective. POPULATION: In all, 48 females with 24 benign and 33 malignant breast lesions. FIELD STRENGTH/SEQUENCE: A diffusion-weighted sequence (b = 0-3000 s/mm2 ) with a 3 T scanner. ASSESSMENT: For each group of benign, malignant, invasive, and in situ breast lesions, the ADC was obtained. Also, θ and k parameters (scale and shape of the statistic distribution, respectively), f1 , f2 , and f3 fractions were obtained from fitting the GD model to diffusion data. STATISTICAL TESTS: Lesion types were compared regarding diffusion parameters using nonparametric statistics and receiver operating characteristic curve diagnostic performance. RESULTS: The majority of GD parameters (k, f1 , f2 , f3 fractions) showed significant differences between benign and malignant lesions, and between in situ and invasive lesions (f1 , f2 , f3 fractions) (P ≤ 0.001). The best diagnostic performances were obtained with ADC and f1 fraction in benign vs. malignant lesions (area under curve [AUC] = 0.923 and 0.913, sensitivity = 93.9% and 81.8%, specificity = 79.2% and 91.7%, accuracy = 87.7% and 86.0%, respectively). In invasive lesions vs. in situ lesions, the best diagnostic performance was obtained with f1 fraction, which outperformed ADC results (AUC = 0.978 and 0.941, and sensitivity = 91.3% for both parameters, specificity = 100.0% and 90.0%, accuracy = 93.9% and 90.9%, respectively). DATA CONCLUSION: This work shows that the GD model provides information in addition to the ADC parameter, suggesting its potential in the diagnosis of breast lesions. Level of Evidence 2: Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2019;50:230-238.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Neoplasias da Mama / Imagem de Difusão por Ressonância Magnética Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Neoplasias da Mama / Imagem de Difusão por Ressonância Magnética Idioma: En Ano de publicação: 2019 Tipo de documento: Article